1
|
Clinical and Genetic Studies of the First Monozygotic Twins with Pfeiffer Syndrome. Genes (Basel) 2022; 13:genes13101850. [PMID: 36292735 PMCID: PMC9601734 DOI: 10.3390/genes13101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: To report the clinical and radiographic findings and molecular etiology of the first monozygotic twins affected with Pfeiffer syndrome. Methods: Clinical and radiographic examination and whole exome sequencing were performed on two monozygotic twins with Pfeiffer syndrome. Results: An acceptor splice site mutation in FGFR2 (c.940-2A>G) was detected in both twins. The father and both twins shared the same haplotype, indicating that the mutant allele was from their father’s chromosome who suffered severe upper airway obstruction and subsequent obstructive sleep apnea. Hypertrophy of nasal turbinates appears to be a newly recognized finding of Pfeiffer syndrome. Increased intracranial pressure in both twins were corrected early by fronto-orbital advancement with skull expansion and open osteotomy, in order to prevent the more severe consequences of increased intracranial pressure, including hydrocephalus, the bulging of the anterior fontanelle, and the diastasis of suture. Conclusions: Both twins carried a FGFR2 mutation and were discordant for lambdoid synostosis. Midface hypoplasia, narrow nasal cavities, and hypertrophic nasal turbinates resulted in severe upper airway obstruction and subsequent obstructive sleep apnea in both twins. Hypertrophy of the nasal turbinates appears to be a newly recognized finding of Pfeiffer syndrome. Fronto-orbital advancement with skull expansion and open osteotomy was performed to treat increased intracranial pressure in both twins. This is the first report of monozygotic twins with Pfeiffer syndrome.
Collapse
|
2
|
Warnecke A, Giesemann A. Embryology, Malformations, and Rare Diseases of the Cochlea. Laryngorhinootologie 2021; 100:S1-S43. [PMID: 34352899 PMCID: PMC8354575 DOI: 10.1055/a-1349-3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the low overall prevalence of individual rare diseases, cochlear
dysfunction leading to hearing loss represents a symptom in a large
proportion. The aim of this work was to provide a clear overview of rare
cochlear diseases, taking into account the embryonic development of the
cochlea and the systematic presentation of the different disorders. Although
rapid biotechnological and bioinformatic advances may facilitate the
diagnosis of a rare disease, an interdisciplinary exchange is often required
to raise the suspicion of a rare disease. It is important to recognize that
the phenotype of rare inner ear diseases can vary greatly not only in
non-syndromic but also in syndromic hearing disorders. Finally, it becomes
clear that the phenotype of the individual rare diseases cannot be
determined exclusively by classical genetics even in monogenetic
disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover.,Deutsche Forschungsgemeinschaft Exzellenzcluster"Hearing4all" - EXC 2177/1 - Project ID 390895286
| | - Anja Giesemann
- Institut für Neuroradiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover
| |
Collapse
|
3
|
Ibarra-Arce A, Almaraz-Salinas M, Martínez-Rosas V, Ortiz de Zárate-Alarcón G, Flores-Peña L, Romero-Valdovinos M, Olivo-Díaz A. Clinical study and some molecular features of Mexican patients with syndromic craniosynostosis. Mol Genet Genomic Med 2020; 8:e1266. [PMID: 32510873 PMCID: PMC7434736 DOI: 10.1002/mgg3.1266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/21/2019] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Craniosynostosis is one of the major genetic disorders affecting 1 in 2,100-2,500 live newborn children. Environmental and genetic factors are involved in the manifestation of this disease. The suggested genetic causes of craniosynostosis are pathogenic variants in FGFR1, FGFR2, FGFR3, and TWIST1 genes. METHODS In order to describe their major clinical characteristics and the presence of pathogenic variants, a sample of 36 Mexican patients with craniosynostosis diagnosed as: Crouzon (OMIM 123,500), Pfeiffer (OMIM 101,600), Apert (OMIM 101,200), Saethre-Chotzen (OMIM 101,400), and Muenke (OMIM 602,849) was analyzed. RESULTS In addition to craniosynostosis, most of the patients presented hypertelorism, midface hypoplasia, and abnormalities in hands and feet. To detect the pathogenic variants p.Pro252Arg FGFR1 (OMIM 136,350), p.Ser252Trp, p.Pro253Arg FGFR2 (OMIM 176,943), p.Pro250Arg, FGFR3 (OMIM 134,934), and p.Gln119Pro TWIST1 (OMIM 601,622), PCR amplification and restriction enzyme digestion were performed. Four and two patients with Apert presented the pathogenic variants p.Ser252Trp and p.Pro253Arg in FGFR2, respectively (with a frequency of 11.1% and 5.5%). The p.Pro250Arg pathogenic variant of FGFR3 was found in a patient with Muenke (with a frequency of 2.8%). The above percentages were calculated with the total number of patients. CONCLUSION The contribution of this work is discreet, since only 4 genes were analyzed and sample size is small. However, this strategy could be improved by sequencing the FGFR1, FGFR2, FGFR3, and TWIST1 genes, to determine different pathogenic variants. On the other hand, it would be important to include other genes, such as TCF12 (OMIM 600,480), MSX2 (OMIM 123,101), RAB23 (OMIM 606,144), and EFNB1 (OMIM 300,035), to determine their participation in craniosynostosis in the Mexican population.
Collapse
Affiliation(s)
- Aurora Ibarra-Arce
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Manuel Almaraz-Salinas
- División de Genética, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Víctor Martínez-Rosas
- División de Genética, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | | | - Laura Flores-Peña
- División de Genética, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Mirza Romero-Valdovinos
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Angélica Olivo-Díaz
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| |
Collapse
|
4
|
Rigueur D, Roberts RR, Bobzin L, Merrill AE. A requirement for Fgfr2 in middle ear development. Genesis 2018; 57:e23252. [PMID: 30253032 DOI: 10.1002/dvg.23252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
The skeletal structure of the mammalian middle ear, which is composed of three endochondral ossicles suspended within a membranous air-filled capsule, plays a critical role in conducting sound. Gene mutations that alter skeletal development in the middle ear result in auditory impairment. Mutations in fibroblast growth factor receptor 2 (FGFR2), an important regulator of endochondral and intramembranous bone formation, cause a spectrum of congenital skeletal disorders featuring conductive hearing loss. Although the middle ear malformations in multiple FGFR2 gain-of-function disorders are clinically characterized, those in the FGFR2 loss-of-function disorder lacrimo-auriculo-dento-digital (LADD) syndrome are relatively undescribed. To better understand conductive hearing loss in LADD, we examined the middle ear skeleton of mice with conditional loss of Fgfr2. We find that decreased auditory function in Fgfr2 mutant mice correlates with hypoplasia of the auditory bulla and ectopic bone growth at sites of tendon/ligament attachment. We show that ectopic bone associated with the intra-articular ligaments of the incudomalleal joint is derived from Scx-expressing cells and preceded by decreased expression of the joint progenitor marker Gdf5. Together, these results identify a role for Fgfr2 in development of the middle ear skeletal tissues and suggest potential causes for conductive hearing loss in LADD syndrome.
Collapse
Affiliation(s)
- Diana Rigueur
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryan R Roberts
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lauren Bobzin
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
5
|
Cochlear Implantation in a Patient With Pfeiffer Syndrome and Temporal Bone Vascular Anomalies. Otol Neurotol 2016; 37:241-3. [DOI: 10.1097/mao.0000000000000965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Agochukwu NB, Solomon BD, Muenke M. Hearing loss in syndromic craniosynostoses: otologic manifestations and clinical findings. Int J Pediatr Otorhinolaryngol 2014; 78:2037-47. [PMID: 25441602 DOI: 10.1016/j.ijporl.2014.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE This review addresses hearing loss as it occurs and has been reported in Muenke syndrome as well as six additional FGFR related craniosynostosis syndromes (Apert syndrome, Pfeiffer syndrome, Crouzon syndrome, Beare-Stevenson syndrome, Crouzon syndrome with acanthosis nigricans, and Jackson-Weiss syndrome. DATA SOURCES Pub-Med, Medline, Cochrane Database, Science Direct, NLM Catalog. REVIEW METHODS A Medline search was conducted to find all reported cases of the 7 FGFR related syndromic craniosynostosis. Special attention was paid to literature that reported hearing findings and the audiology literature. RESULTS Hearing loss occurs in variable percentage as a component part of all FGFR related craniosynostosis syndromes. Our literature review revealed the following incidences of hearing loss in FGFR craniosynostoses: 61% in Muenke syndrome, 80% in Apert Syndrome, 92% in Pfeiffer syndrome, 74% in Crouzon syndrome, 68% in Jackson Weiss syndrome, 4% in Beare Stevenson syndrome and 14% in Crouzon syndrome with Acanthosis Nigricans. The majority of the hearing loss is a conductive hearing loss, with the exception of Muenke syndrome where the majority of patients have a sensorineural hearing loss and Crouzon syndrome where almost half of patients have a pure or component of sensorineural hearing loss. CONCLUSION This manuscript presents a diagnostic and management algorithm for patients with syndromic craniosynostosis. It will aid clinicians in treating these patients and further, the recognition of a possible syndrome in patients with hearing loss who also have syndromic features.
Collapse
Affiliation(s)
- Nneamaka B Agochukwu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, NIH, MSC 3717, Building 35, Room 1B-207, Bethesda, MD 20892, USA; Clinical Research Training Program, National Institutes of Health, Bethesda, MD, USA.
| | - Benjamin D Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, NIH, MSC 3717, Building 35, Room 1B-207, Bethesda, MD 20892, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, NIH, MSC 3717, Building 35, Room 1B-207, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Abstract
BACKGROUND Pfeiffer syndrome is characterized by craniosynostosis and a variety of associated upper and lower extremity anomalies. The authors reviewed presentation and treatment of upper extremity anomalies in a series of genotyped patients with Pfeiffer syndrome. METHODS Medical records of patients with Pfeiffer syndrome seen at the authors' institution over a 16-year period were reviewed. Data on clinical presentation, genetic testing, and treatment were collected. The upper extremity anomalies were documented using plain radiographs and physical examinations by a multidisciplinary craniofacial team. RESULTS Of 15 patients identified as having FGFR1- or FGFR2-confirmed Pfeiffer syndrome, 12 (80 percent) presented with upper extremity anomalies, most commonly broad thumbs [n = 10 (83 percent)], radial clinodactyly (thumbs) [n = 7 (58 percent)], and symphalangism [n = 7 each (58 percent)]. All patients with upper extremity anomalies had lower extremity anomalies. Six of the 12 patients (50 percent) with upper extremity findings underwent surgical correction. FGFR1 or FGFR2 genotype did not correlate with upper extremity phenotype. CONCLUSIONS Although broad thumbs are common, patients with Pfeiffer syndrome often present with other upper extremity anomalies that may not require surgical intervention. Genetic and allelic heterogeneity may explain phenotypic variability in these upper extremity anomalies. Characterization of these limb differences should be made by pediatric hand surgeons as part of a craniofacial team. Treatment decisions should be individualized and dictated by the type and severity of clinical presentation. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, IV.
Collapse
|
8
|
Agochukwu NB, Solomon BD, Muenke M. Hearing loss in syndromic craniosynostoses: introduction and consideration of mechanisms. Am J Audiol 2014; 23:135-41. [PMID: 24686979 DOI: 10.1044/2014_aja-13-0036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE There are a number of craniosynostosis syndromes with hearing loss-including Muenke, Apert, Pfeiffer, Crouzon, Beare-Stevenson, Crouzon with acanthosis nigricans, and Jackson-Weiss syndromes-that result from mutations in the fibroblast growth factor receptor (FGFR) genes. Studies of FGFRs and their ligands, fibroblast growth factors (FGFs), have revealed clues to the precise contribution of aberrant FGFR signaling to inner ear morphogenesis and the hearing loss encountered in craniosynostoses. The purpose of this article is to review basic studies of FGFRs with emphasis on their function and expression in the inner ear and surrounding structures. METHOD A Medline search was performed to find basic science articles regarding FGFR, their ligands, and their expression and relevant mouse models. Additional items searched included clinical descriptions and studies of individuals with FGFR-related craniosynostosis syndromes. RESULTS The FGF signaling pathway is essential for the morphogensis and proper function of the inner ear and auditory sensory epithelium. CONCLUSION The variable auditory phenotypes seen in individuals with Muenke syndrome may have a genetic basis, likely due to multiple interacting factors in the genetic environment or modifying factors. Further analysis and studies of mouse models of Muenke syndrome, in particular, may provide clues to the specific effects of the defining mutation in FGFR3 in the inner ear not only at birth but also into adulthood. In particular, investigations into these models may give insight into the variable expression and incomplete penetrance of this phenotype.
Collapse
Affiliation(s)
- Nneamaka B. Agochukwu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Clinical Research Training Program, National Institutes of Health, Bethesda, MD
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Hurd EA, Adams ME, Layman WS, Swiderski DL, Beyer LA, Halsey KE, Benson JM, Gong TW, Dolan DF, Raphael Y, Martin DM. Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hear Res 2011; 282:184-95. [PMID: 21875659 DOI: 10.1016/j.heares.2011.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7(Gt)(/+) mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7(Gt)(/+) mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7(Gt)(/+) mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7(Gt)(/+) mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears.
Collapse
Affiliation(s)
- Elizabeth A Hurd
- Department of Pediatrics, 3520A MSRB I, University of Michigan, Ann Arbor, MI 48109-5652, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|