1
|
Rasoulian B, Sheikholislam Z, Houshdar Tehrani MH, Chegeni S, Hoveizi E, Rezayat SM, Tavakol S. Unveiling the superior function of RADA in bone regeneration compared to KSL as two critical cores within self-assembling peptide nanofibers: Insights from in vitro and in vivo studies. Regen Ther 2024; 26:999-1009. [PMID: 39553539 PMCID: PMC11564076 DOI: 10.1016/j.reth.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Self-assembling peptide nanofibers have emerged as promising biomaterials in the realm of bone tissue engineering due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix. This study delved into the comparative efficacy of two distinct self-assembling peptide nanofibers, RADA-BMHP1 and KSL-BMHP1, both incorporating the biological motif of BMHP1, but differing in their core peptide sequences. Methods Cell viability and osteogenic differentiation in rat mesenchymal stem cells (rMSCs), and bone regeneration in rat were compared. Results In vitro assays revealed that KSL-BMHP1 promoted enhanced cell viability, and nitric oxide production than RADA-BMHP1, an effect potentially attributable to its lower hydrophobicity and higher net charge at physiological pH. Conversely, RADA-BMHP1 induced superior osteogenic differentiation, evidenced by upregulation of key osteogenic genes, increased alkaline phosphatase activity (ALP), and enhanced matrix mineralization which may be attributed to its higher protein-binding potential and grand hydropathy, facilitating interactions between the peptide nanofibers and proteins involved in osteogenesis. In vivo experiments utilizing a rat bone defect model demonstrated that both peptide nanofibers improved bone regeneration at the genes level and ALP activity, with RADA-BMHP1 exhibiting a more pronounced increase in bone formation compared to KSL-BMHP1. Histological evaluation using H&E, Masson's trichrome and Wright-Giemsa staining confirmed the biocompatibility of both nanofibers. Conclusion These findings underscore the pivotal role of the core structure of self-assembling peptide nanofibers, beyond their biological motif, in the fate of tissue regeneration. Further research is warranted to optimize the physicochemical properties and functionalization of these nanofibers to enhance their efficacy in bone regeneration applications.
Collapse
Affiliation(s)
- Bita Rasoulian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Biomedical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Zahra Sheikholislam
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Solmaz Chegeni
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran
| |
Collapse
|
2
|
The Twofold Role of Osteogenic Small Molecules in Parkinson's Disease Therapeutics: Crosstalk of Osteogenesis and Neurogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3813541. [PMID: 36545269 PMCID: PMC9763015 DOI: 10.1155/2022/3813541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Deemed one of the most problematic neurodegenerative diseases in the elderly population, Parkinson's disease remains incurable to date. Ongoing diagnostic studies, however, have revealed that a large number of small molecule drugs that trigger the BMP2-Smad signaling pathway with an osteogenic nature may be effective in Parkinson's disease treatment. Although BMP2 and Smad1, 3, and 5 biomolecules promote neurite outgrowth and neuroprotection in dopaminergic cells as well, small molecules are quicker at crossing the BBB and reaching the damaged dopaminergic neurons located in the substantia nigra due to a molecular weight less than 500 Da. It is worth noting that osteogenic small molecules that inhibit Smurf1 phosphorylation do not offer therapeutic opportunities for Parkinson's disease; whereas, osteogenic small molecules that trigger Smad1, 3, and 5 phosphorylation may have strong therapeutic implications in Parkinson's disease by increasing the survival rate of dopaminergic cells and neuritogenesis. Notably, from a different perspective, it might be said that osteogenic small molecules can possibly put forth therapeutic options for Parkinson's disease by improving neuritogenesis and cell survival.
Collapse
|
3
|
Cellulose-Chitosan-Nanohydroxyapatite Hybrid Composites by One-Pot Synthesis for Biomedical Applications. Polymers (Basel) 2021; 13:polym13101655. [PMID: 34069677 PMCID: PMC8161035 DOI: 10.3390/polym13101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
The development of organic–inorganic hybrid materials deserves special interest for bone tissue engineering applications, where materials must have properties that induce the survival and activation of cells derived from the mesenchyme. In this work, four bio-nanocomposites based on cellulose and variable content of chitosan, from 15 to 50 w% based on cellulose, with nanohydroxyapatite and β-Glycerophosphate as cross-linking agent were synthesized by simplified and low-energy-demanding solvent exchange method to determine the best ratio of chitosan to cellulose matrix. This study analyzes the metabolic activity and survival of human dermal fibroblast cells cultivated in four bio-nanocomposites based on cellulose and the variable content of chitosan. The biocompatibility was tested by the in vitro cytotoxicity assays Live/Dead and PrestoBlue. In addition, the composites were characterized by FTIR, XRD and SEM. The results have shown that the vibration bands of β-Glycerophosphate have prevailed over the other components bands, while new diffraction planes have emerged from the interaction between the cross-linking agent and the biopolymers. The bio-nanocomposite micrographs have shown no surface porosity as purposely designed. On the other hand, cell death and detachment were observed when the composites of 1 and 0.1 w/v% were used. However, the composite containing 10 w% chitosan, against the sum of cellulose and β-Glycerophosphate, has shown less cell death and detachment when used at 0.01 w/v%, making it suitable for more in vitro studies in bone tissue engineering, as a promising economical biomaterial.
Collapse
|
4
|
G. P, Kalarikkal N, Thomas S. Challenges in nonparenteral nanomedicine therapy. THEORY AND APPLICATIONS OF NONPARENTERAL NANOMEDICINES 2021. [PMCID: PMC7499062 DOI: 10.1016/b978-0-12-820466-5.00002-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Tavakol S, Rasoulian B, Ramezani F, Hoveizi E, Tavakol B, Rezayat SM. Core and biological motif of self-assembling peptide nanofiber induce a stronger electrostatic interaction than BMP2 with BMP2 receptor 1A. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:148-158. [PMID: 31029307 DOI: 10.1016/j.msec.2019.03.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/03/2019] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
Abstract
Recent studies suggest that nanotopography can trigger colocalization of integrins and bone morphogenetic protein 2 (BMP2) receptors (e.g., BMPR1A), thereby leading to osteogenesis. In this study, the bone marrow homing peptide 1 (BMHP1) motif was bound to a self-assembling peptide core to form a hydrogel-based nanofiber (R-BMHP1). The docking and molecular dynamic study revealed that the R-BMHP1 sequence induced a stronger electrostatic interaction than BMP2 through arginines in the RADA core sequence and through lysine24 in the BMHP1 motif with BMPR1A. Notably, decrease of polar solvation binding energy will enhance the total binding energy and increases bone regeneration even more than BMP2 The enhanced osteogenesis and bone repair potential of R-BMHP1 nanofiber might be related to its chemical interaction with BMPR1A, which triggered downstream signal transduction through osteogenic genes overexpression in osteo-differentiated mesenchymal stem cells (MSCs), as well as implanted critical-sized bone defects in rats. Following that, calcium deposition occurred by osteoblast-like cells, ALP activity increased in osteodifferentiation MSCs and rat serum, and calcium density improved in bone defects (X-ray). The nanofiber was biocompatible and enhanced the cell viability of MSCs, without multinuclear cell infiltration into the defect site. Taking everything into account, not only does nanotopography induce osteogenesis through colocalization of BMPRs and integrins, but also R-BMHP1 nanofibers (considering their chemical structure) induce cell proliferation, osteogenesis, and bone repair through strong electrostatic interaction with BMPR1A and downstream signaling. The entire outcome of this study manifests the plausibility of R-BMHP1 for spine and spinal cord injury repair.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bita Rasoulian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Behnaz Tavakol
- School of Medicine, Kashan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Qing Q, Zhang YJ, Yang JL, Ning LJ, Zhang YJ, Jiang YL, Zhang Y, Luo JC, Qin TW. Effects of hydrogen peroxide on biological characteristics and osteoinductivity of decellularized and demineralized bone matrices. J Biomed Mater Res A 2019; 107:1476-1490. [PMID: 30786151 DOI: 10.1002/jbm.a.36662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 02/05/2023]
Abstract
Due to the similar collagen composition and closely physiological relationship with soft connective tissues, demineralized bone matrices (DBMs) were used to repair the injured tendon or ligament. However, the osteoinductivity of DBMs would be a huge barrier of these applications. Hydrogen peroxide (H2 O2 ) has been proved to reduce the osteoinductivity of DBMs. Nevertheless, the biological properties of H2 O2 -treated DBMs have not been evaluated completely, while the potential mechanism of H2 O2 compromising osteoinductivity is also unclear. Hence, the purpose of this study was to characterize the biological properties of H2 O2 -treated DBMs and search for the proof that H2 O2 could compromise osteoinductivity of DBMs. Decellularized and demineralized bone matrices (DCDBMs) were washed by 3% H2 O2 for 12 h to fabricate the H2 O2 -treated DCDBMs (HPTBMs). Similar biological properties including collagen, biomechanics, and biocompatibility were observed between DCDBMs and HPTBMs. The immunohistochemistry staining of bone morphogenetic protein 2 (BMP-2) was negative in HPTBMs. Furthermore, HPTBMs exhibited significantly reduced osteoinductivity both in vitro and in vivo. Taken together, these findings suggest that the BMP-2 in DCDBMs could be the target of H2 O2 . HPTBMs could be expected to be used as a promising scaffold for tissue engineering. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Quan Qing
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Faculty of Basic Medicine, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| | - Yan-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie-Liang Yang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ya-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Rasoulian B, Almasi A, Hoveizi E, Bagher Z, Hayat P, Joghataei MT, Rezayat SM, Tavakol S. Strong binding active constituents of phytochemical to BMPR1A promote bone regeneration: In vitro, in silico docking, and in vivo studies. J Cell Physiol 2019; 234:14246-14258. [PMID: 30656682 DOI: 10.1002/jcp.28121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/11/2018] [Indexed: 11/08/2022]
Abstract
Two of the most problematic orthopedic and neurosurgeon visits are associated with spine and craniofacial fractures. Therefore, more attention needs to be paid to finding a medicine to repair these fractures. Amongst the most mysterious herbs, Aloe vera stands out. In the present study, the ameliorating function of A. vera on osteogenesis was studied in vitro and in vivo. Osteoblast-like cells were exposed to A. vera, followed by analysis of cell viability, lactate dehydrogenase release, and intracellular reactive oxygen species (ROS) production. The results showed an enhanced cell biocompatibility in a dose-dependent manner due to attenuated intracellular ROS production. Furthermore, a docking study indicated that the strong affinity of A. vera constituents to type I bone morphogenic protein receptor (BMPR1A) without the involvement of the BMPR1A chain B. The induction of osteogenesis prompts extracellular calcium deposition by osteoblasts, which affirms successful in vitro bone regeneration. However, injection of A. vera in rats with critical size calvarial defects induced Runx2, alkaline phosphatase (ALP), OCN, and BMP2 genes overexpression, which led to the formation of victorious bone with enhanced bone density and ALP activity. It is worthy to note that Aloin has the highest affinity to BMPR1A, whereas there are no reports regarding the impact of Aloenin, Aloesin, and γ-sitosterol on osteogenesis. Furthermore, some of them have antitumor potency, and it might be proposed that they are considered as a bone substitute in the osteotomy site of osteosarcoma with the aim of bone recovery and suppression of osteosarcoma. The whole consequences of this investigation manifests the plausibility of using A. vera as an antioxidant and osteoconductive substitute.
Collapse
Affiliation(s)
- Bita Rasoulian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Almasi
- Department of Medical Nanotechnology, Pharmaceutical Sciences Branch, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohre Bagher
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Temraz A, Ghallab NA, Hamdy R, El-Dahab OA. Clinical and radiographic evaluation of amnion chorion membrane and demineralized bone matrix putty allograft for management of periodontal intrabony defects: a randomized clinical trial. Cell Tissue Bank 2019; 20:117-128. [DOI: 10.1007/s10561-018-09743-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/21/2018] [Indexed: 01/03/2023]
|
9
|
Zhang N, Ma L, Liu X, Jiang X, Yu Z, Zhao D, Zhang L, Zhang C, Huang F. In vitro and in vivo evaluation of xenogeneic bone putty with the carrier of hydrogel derived from demineralized bone matrix. Cell Tissue Bank 2018; 19:591-601. [PMID: 29974309 DOI: 10.1007/s10561-018-9708-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
The demineralized bone matrix (DBM) putty is a traditional bone graft utilized to facilitate the repair and reconstruction of bone. Recent studies indicated the DBM putties with the various carriers were different in bone repairing ability. In order to prepare a kind of DBM putty with a good biocompatibility and bioactivity, the DBM gel was processed from the DBM and the feasibility as a carrier for the DBM putty was evaluated. After the bovine DBM gel was prepared, the BMPs content as well as the ability to promote osteogenic differentiation of MC3T3-E1 cells in vitro were investigated. Then the DBM putty was prepared and filled into the rat calvarial defect model to evaluate the bone repairing ability by micro-CT and histology. The result showed there was 2.953 ± 0.054 ng BMP contained in per gram of the DBM gel. And the ALP production of MC3T3-E1 cells in the DBM gels group increased with prolonged culturing, the mineralized nodules formed in MC3T3-E1 cells on 14th day after co-culture. The putty prepared by DBM gel was easy to handle without loss of DBM particles at room temperature. In the rat calvarial bone defect experiment, histological observation showed more mature bone formed in the DBM putty group than that in the type I collagen group at 12 weeks, which indicated the bone putty prepared by DBM gel exhibited a better bone repair capability.
Collapse
Affiliation(s)
- Naili Zhang
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, 264003, Shandong, China
| | - Lina Ma
- Department of Diagnostics, School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, 264003, Shandong, China
| | - Xiaowei Liu
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, 264003, Shandong, China
| | - Xiaorui Jiang
- Department of Hand and Foot Surgery, Yuhuangding Hospital, 20 Yuhuangding East Road, Zhifu, Yantai, 264000, China
| | - Zhenhai Yu
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, 264003, Shandong, China
| | - Dongmei Zhao
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, 264003, Shandong, China
| | - Luping Zhang
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, 264003, Shandong, China
| | - Chunlei Zhang
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, 264003, Shandong, China
| | - Fei Huang
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, 264003, Shandong, China.
| |
Collapse
|
10
|
Liu X, Yang L, Li J, Zhang Y, Xu W, Ren Y, Liu B, Yang B, Li B. GS/DBM/PLA porous composite biomaterial for the treatment of infective femoral condyle defect in rats. Exp Ther Med 2016; 11:2107-2116. [PMID: 27284292 PMCID: PMC4887764 DOI: 10.3892/etm.2016.3219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/25/2015] [Indexed: 11/06/2022] Open
Abstract
A bone defect resulting from open bone trauma may easily become infected; however, the administration of efficacious systemic antibiotics cannot be performed at safe levels. Previous studies have investigated anti-infective biomaterials that incorporate into bone and facilitate the direct application of high-concentration local antibiotics. In the present study, the effect of a novel porous composite with gentamicin sulfate (GS) in treating infected femoral condyle defects was investigated using a rat model. A novel porous composite biomaterial was prepared based on a supercritical carbon dioxide fluid technique that combined GS, demineralized bone matrix (DBM) and polylactic acid (PLA). A rat femoral condyle fracture model of infection was established. The GS/DBM/PLA composite biomaterial was implanted and its physicochemical characteristics, biocompatibility and ability to facilitate repair of infected bone defect were assessed. The GS/DBM/PLA composite biomaterial maintained the antibiotic activity of GS, with good anti-compression strength, porosity and biocompatibility. The results of the animal experiments indicated that the GS/DBM/PLA composite biomaterial exerted marked anti-infective effects and facilitated bone defect repair, while simultaneously controlling infection. Porous GS/DBM/PLA is therefore a promising composite biomaterial for use in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Lin Yang
- Department of Human Anatomy, Zunyi Medical College, Zhuhai, Guangdong 519041, P.R. China
| | - Jing Li
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Yuming Zhang
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Weijun Xu
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Yan Ren
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Biwang Liu
- Department of Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi 030001, P.R. China
| | - Biao Yang
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| | - Baoxing Li
- Department of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; China Institute for Radiation Protection, Taiyuan, Shanxi 030006, P.R. China
| |
Collapse
|
11
|
Chaudhury K, Kumar V, Kandasamy J, RoyChoudhury S. Regenerative nanomedicine: current perspectives and future directions. Int J Nanomedicine 2014; 9:4153-67. [PMID: 25214780 PMCID: PMC4159316 DOI: 10.2147/ijn.s45332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined.
Collapse
Affiliation(s)
- Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Vishu Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Jayaprakash Kandasamy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
12
|
Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014; 9:18. [PMID: 24628910 PMCID: PMC3995444 DOI: 10.1186/1749-799x-9-18] [Citation(s) in RCA: 643] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/20/2014] [Indexed: 12/14/2022] Open
Abstract
This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future.
Collapse
Affiliation(s)
| | | | - Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran.
| | | |
Collapse
|
13
|
Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014. [PMID: 24628910 DOI: 10.1186/1749-799x9-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future.
Collapse
Affiliation(s)
| | | | - Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran.
| | | |
Collapse
|