1
|
Bernanke A, Sette S, Hernandez N, Zimmerman S, Murphy J, Francis R, Reavis Z, Kuhn C. Male and female rats exhibit comparable gaping behavior but activate brain regions differently during expression of conditioned nausea. Behav Pharmacol 2022; 33:291-300. [PMID: 35621171 PMCID: PMC9354039 DOI: 10.1097/fbp.0000000000000676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Twenty-five to fifty percent of patients undergoing chemotherapy will develop anticipatory nausea and vomiting (ANV), in which symptoms occur in anticipation of treatment. ANV is triggered by environmental cues and shows little response to traditional antiemetic therapy, suggesting that unique neural pathways mediate this response. Understanding the underlying neural mechanisms of this disorder is critical to the development of novel therapeutic interventions. The purpose of the present study was to identify brain areas activated during ANV and characterize sex differences in both the behavior and the brain areas activated during ANV. We used a rat model of ANV by pairing a novel context with the emetic drug lithium chloride (LiCl) to produce conditioned nausea behaviors in the LiCl-paired environment. We quantitated gaping, an analog of human vomiting, after acute or repeated LiCl in a unique environment. To identify brain regions associated with gaping, we measured c-fos activation by immunochemical staining after these same treatments. We found that acute LiCl activated multiple brain regions including the supraoptic nucleus of the hypothalamus, central nucleus of the amygdala, nucleus of the solitary tract and area postrema, none of which were activated during ANV. ANV activated c-fos expression in the frontal cortex, insula and paraventricular nucleus of the hypothalamus of males but not females. These data suggest that therapies such as ondansetron which target the area postrema are not effective in ANV because it is not activated during the ANV response. Further studies aimed at characterizing the neural circuits and cell types that are activated in the conditioned nausea response will help identify novel therapeutic targets for the treatment of this condition, improving both quality of life and outcomes for patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Alyssa Bernanke
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Whiting RL, Choppin A, Luehr G, Jasper JR. Preclinical Evaluation of the Effects of Trazpiroben (TAK-906), a Novel, Potent Dopamine D 2/D 3 Receptor Antagonist for the Management of Gastroparesis. J Pharmacol Exp Ther 2021; 379:85-95. [PMID: 34253646 DOI: 10.1124/jpet.121.000698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022] Open
Abstract
Current therapies for gastroparesis, metoclopramide and domperidone, carry risks of extrapyramidal symptoms and life-threatening cardiac arrhythmias. Trazpiroben, a novel, potent dopamine D2/D3 receptor antagonist, has low brain permeation and very low affinity for human ether-à-go-go-related gene (hERG) channel inhibition, potentially improving on safety profiles of existing therapies. Trazpiroben demonstrated the following receptor affinities: high for D2 and D3, moderate for D4 and minimal for D1 and D5 It demonstrated moderate affinity for adrenergic alpha 1B (α1B) and 5-hydroxytryptamine 2A (5HT2A) receptors and low potential for off-target adverse events (AEs). Trazpiroben potently inhibited dopamine-activated D2L receptor activation of cognate G-proteins in human embryonic kidney 293 cell membranes and was a neutral D2L receptor antagonist. In vivo, trazpiroben dose-dependently increased prolactin release in orally dosed rat (0.1-1mg/kg). Additionally, multiple oral doses in the rat (100mg/kg) and dog (50mg/kg) for 3 days produced robust plasma exposures and prolactin increases in both species. Trazpiroben inhibited retching/vomiting in the dog with apomorphine-induced emesis with a potency (0.1-1mg/kg) like that of trazpiroben-mediated prolactin increases in rat. Oral trazpiroben (1, 10, and 30mg/kg) did not affect rat rotarod performance, suggesting low brain penetration. Trazpiroben concentrations were low in cerebrospinal fluid versus plasma following multiple oral doses for 4 days in rat and dog. Trazpiroben weakly inhibited the hERG channel current (concentration causing half-maximal inhibition of control-specific binding of 15.6µM), indicating little potential for disrupting cardiac rhythm. Overall, trazpiroben is a potent D2/D3 receptor antagonist designed to avoid serious potential AEs associated with current gastroparesis therapies. Significance Statement Trazpiroben is a novel, potent dopamine D2/D3 selective receptor antagonist designed to avoid adverse effects associated with the current pharmacological therapies, metoclopramide and domperidone. Pre-clinical studies have demonstrated low brain penetration and weak affinity for the hERG channel, indicating that trazpiroben is not expected to be associated with central nervous system or cardiovascular safety issues. With these pharmacological properties, trazpiroben may represent a viable new treatment option for gastroparesis due to a potentially improved safety profile relative to existing therapies.
Collapse
Affiliation(s)
| | | | - Gary Luehr
- Medicinal Chemistry Department, ARYx Therapeutics Inc. (at time of development, now retired), United States
| | | |
Collapse
|
3
|
Shen TJ, Hanh VT, Nguyen TQ, Jhan MK, Ho MR, Lin CF. Repurposing the Antiemetic Metoclopramide as an Antiviral Against Dengue Virus Infection in Neuronal Cells. Front Cell Infect Microbiol 2021; 10:606743. [PMID: 33634036 PMCID: PMC7902071 DOI: 10.3389/fcimb.2020.606743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is transmitted by Aedes mosquitoes to humans and is a threat worldwide. No effective new drugs have been used for anti-dengue treatment, and repurposing drugs is an alternative approach to treat this condition. Dopamine 2 receptor (D2R) is a host receptor positively associated with DENV infection. Metoclopramide (MCP), a D2R antagonist clinically used to control vomiting and nausea in patients with DENV infection, was putatively examined for inhibition of DENV infection by targeting D2R. In the mouse neural cell line Neuro-2a with D2R expression, a plaque assay demonstrated the antiviral efficacy of MCP treatment. However, in the cell line BHK-21, which did not express D2R, MCP treatment caused no further inhibition of DENV infection. Either MCP treatment or exogenous administration of a neutralizing D2R antibody blocked DENV binding. Treatment with MCP also reduced DENV dsRNA replication and DENV-induced neuronal cell cytotoxicity in vitro. An in vivo study demonstrated the antiviral effect of MCP against DENV-induced CNS neuropathy and mortality. These results showed that repurposing the D2R-targeting antiemetic MCP is a potential therapeutic strategy against DENV infection.
Collapse
Affiliation(s)
- Ting-Jing Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vu Thi Hanh
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Centre for Hematology and Blood Transfusion, Bach Mai Hospital, Hanoi, Vietnam
| | - Thai Quoc Nguyen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Centre for Tropical Diseases, Bach Mai Hospital, Hanoi, Vietnam
| | - Ming-Kai Jhan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Ru Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Kow CS, Hasan SS. Prochlorperazine for nausea and vomiting accompanied COVID-19. J Gastroenterol Hepatol 2021; 36:524-525. [PMID: 33068035 DOI: 10.1111/jgh.15301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- C S Kow
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - S S Hasan
- Department of Pharmacy, University of Huddersfield, Huddersfield, United Kingdom.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| |
Collapse
|