1
|
Xu A, Yuan K, Xue S, Lu W, Wu X, Liu W, Xue Q, Liu L, Hu J, Guo L, Zhang Y, Hu X, Chun Wong GT, Lu L, Huang C. Laminin-dystroglycan mediated ferroptosis in hemorrhagic shock and reperfusion induced-cognitive impairment through AMPK/Nrf2. Free Radic Biol Med 2025; 230:1-16. [PMID: 39864758 DOI: 10.1016/j.freeradbiomed.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice. The ferroptosis induced by OGD/R was characterized by transmission electron microscopy, the localization of FTH1 and TFR1 in HT22 cells. However, neuronal ferroptosis was prevented by suppressing AMPK through siRNA transfection or AMPK inhibitor pretreatment (compound C) in vitro. There was a consistent increase in Nrf2 with ROS accumulation, iron deposition, and lipid peroxidation in the hippocampal neurons and tissues. Nrf2 knockdown or overexpression significantly modulated OGD/R induced-ferroptosis. Activating ferroptosis by erastin (a ferroptosis inducer) or inhibiting it by ferrostatin-1 (a ferroptosis inhibitor) respectively enhanced or mitigated cognitive deficits as well as the ferroptosis-related changes induced by HSR. In addition to the improved cognition, single-nucleus transcriptome analysis of ipsilateral hippocampi from Nrf2-/- mice demonstrated the broad decrease of ferroptosis in neuronal cell clusters. LAMA2 and DAG1 were dominantly elevated and co-localized in the hippocampal CA3 region of Nrf2-/- mice by fluorescence in situ hybridization. The activation of astrocytes was significantly attenuated after Nrf2 knockout, associated with the increases of laminin-dystroglycan during astrocyte-neuron crosstalk. Thus, data from this study proposes a novel explanation, namely laminin-dystroglycan interactions during astrocytes-neurons crosstalk stimulating AMPK and Nrf2 induced neuronal ferroptosis, for the development of cognitive impairment after HSR.
Collapse
Affiliation(s)
- Aoxue Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Song Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wenping Lu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xiaoli Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wei Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Qi Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Lulu Liu
- Department of Anesthesiology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Jia Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Liyuan Guo
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Bai Y, Bai J, Lu P, Jing YM, Zheng WC, Wang LY, Wang JH, Wang F. Hirudin ameliorates myocardial ischemia-reperfusion injury in a rat model of hemorrhagic shock and resuscitation: roles of NLRP3-signaling pathway. Mol Cell Biochem 2024; 479:63-72. [PMID: 36988778 DOI: 10.1007/s11010-023-04717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Severe hemorrhage shock and resuscitation (HSR) has been reported to induce myocardial ischemia-reperfusion injury (MIRI), resulting in a poor prognosis. Hirudin, an effective thrombin inhibitor, can offer protection against MIRI. This study aimed to determine if hirudin administration ameliorates HSR-induced MIRI and the underlying mechanism. A rat model of HSR was established by bleeding rats to a mean arterial blood pressure of 30-35 mmHg for 45 min and then resuscitating them with all the shed blood through the left femoral vein. After HSR, 1 mg/kg of hirudin was administrated immediately. At 24 h after HSR, the cardiac injury was assessed using serum CK-MB, cTnT, hematoxylin-eosin (HE) staining, echocardiography, M1-polarized macrophages, and pyroptosis-associated factors, including cleaved caspase-1, Gasdermin D (GSDMD) N-terminal, IL-1β, and IL-18 were measured by immunofluorescence and western blot assays. Nigericin, a unique agonist, was utilized to evaluate the responsibilities of NLRP3 signaling. Under the HSR condition, rats exhibited a significant increase in myocardial injury score, an elevation of serum cTnT, CK-MB levels, an aggrandization of M1-polarized macrophages, an upregulation of pyroptosis-associated factors, including cleaved caspase-1, GSDMD N-terminal, IL-1β, and IL-18, but a significant decrease in left ventricular ejection fraction (EF%) and a reduction of left ventricular fractional shortening (FS%), while hirudin administration partially restored the changes. However, the NLRP3 agonist nigericin reversed the cardioprotective effects of hirudin. We determined the cardioprotective effects of hirudin against HSR-induced MIRI. The mechanism may involve the inhibition of NLRP3-induced pyroptosis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Peng Lu
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, China
| | - Yu-Mo Jing
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jian-Hua Wang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Feng Wang
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
3
|
Zhang M, Huang C, Zhang L, Huang L, Hu X. Phosphoinositide-3-Kinase/Akt-Endothelial Nitric Oxide Synthase Signaling Pathway Mediates the Neuroprotective Effect of Sevoflurane Postconditioning in a Rat Model of Hemorrhagic Shock and Resuscitation. World Neurosurg 2021; 157:e223-e231. [PMID: 34634505 DOI: 10.1016/j.wneu.2021.09.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although extensive reports have demonstrated the neuroprotection of sevoflurane postconditioning in cases of focal and global cerebral ischemia/reperfusion, the underlying mechanisms are not completely elucidated. This study investigated whether this effect is related to endothelial nitric oxide synthase (eNOS) and mediated by the phosphoinositide-3-kinase pathway in a rat model of hemorrhagic shock and resuscitation. METHODS Adult male Sprague Dawley rats were subjected to hemorrhagic shock for 60 minutes and then resuscitation for 30 minutes in experimental groups. Sevoflurane postconditioning was performed at the beginning of resuscitation to completion. At 24 hours after resuscitation, the brain infarct volume was evaluated by 2,3,5-triphenyltetrazolium chloride staining. The neuronal morphological changes and apoptosis were determined by hematoxylin and eosin staining and immunohistochemistry analysis, respectively. The activity of phosphorylated Akt and eNOS was evaluated by Western blot analysis. RESULTS Brain injuries such as the cerebral infarct volume and pathological neuronal changes as well as cell apoptosis were observed in the hippocampus after hemorrhagic shock and resuscitation. Postconditioning with 2.4% sevoflurane significantly attenuated brain injuries. Wortmannin prevented the improvements of neuronal characteristics elicited by sevoflurane postconditioning as well as the hyperactivity of eNOS and phosphorylated Akt. CONCLUSIONS Sevoflurane postconditioning could attenuate brain injury induced by hemorrhagic shock and resuscitation, and this neuroprotective effect may be partly by upregulation of eNOS through the phosphoinositide-3-kinase/Akt signaling pathway.
Collapse
Affiliation(s)
- Muchun Zhang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chunxia Huang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Li Huang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xianwen Hu
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Fu J, Mu G, Liu X, Ou C, Zhao J. Ischemic postconditioning reduces spinal cord ischemia-reperfusion injury through ATP-sensitive potassium channel. Spinal Cord 2021; 60:326-331. [PMID: 34616009 DOI: 10.1038/s41393-021-00714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Animal study. OBJECTIVES Explore the neuroprotective effect of remote limb ischemic postconditioning (Post C) in spinal cord ischemic reperfusion injury (SCII) and related mechanisms. SETTING Anesthesiology Laboratory of Southwest Medical University. METHODS We established a rabbit SCII model and processed it with Post C. To evaluate the neural function, spinal cord tissue was taken 48 h later, normal neurons were evaluated by HE staining, and the expression of ATP-sensitive potassium channel (KATP) marker molecule Kir6.2 was detected by Western blot. Immunofluorescence detection of spinal cord Iba-1 expression, ELISA detection of M1 type microglia marker iNOS and M2 type microglia marker Arg, and Western blot detection of NF-κB and IL-1β expression. Through these experiments, we will explore the protective effect of Post C in SCII, observe the changes in the protective effect after using KATP blockers, and verify that Post C can play a neuroprotective effect in SCII by activating KATP. RESULTS We observed that Post C significantly improved exercise ability and the number of spinal motor neurons in the SCII model. Microglia are activated and expression of M1 microglia in the spinal cord was decreased, while M2 was increased. This neuroprotective effect was reversed by the nonspecific KATP inhibitor. CONCLUSION Post C has a neuroprotective effect on SCII, and maybe a protective effect produced by activating KATP to regulate spinal microglia polarization and improve neuroinflammation.
Collapse
Affiliation(s)
- Jia Fu
- Department of Pain Management, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, China.
| | - Xiangbo Liu
- Department of Pain Management, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cehua Ou
- Department of Pain Management, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaomei Zhao
- Department of Pain Management, Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Liu J, Wang Z, Lin J, Li T, Guo X, Pang R, Dong L, Duan M. Xuebijing injection in septic rats mitigates kidney injury, reduces cortical microcirculatory disorders, and suppresses activation of local inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114199. [PMID: 33989736 DOI: 10.1016/j.jep.2021.114199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuebijing injections originate from the traditional Chinese medicine (TCM) prescription XuefuZhuyu Decoction. It is composed of five Chinese herbal extracts; Carthami flos, Paeoniae radix rubra, Chuanxiong rhizoma, Salviae miltiorrhizae, and Angelicae Sinensis radix. The China Food and Drug Administration approved Xuebijing injections as a TCM preparation for the adjuvant treatment of sepsis. AIM OF THE STUDY This study aims to determine the effects of Xuebijing injections as an adjuvant to antibiotics for the treatment of renal microcirculatory dysfunction and renal inflammation in rats with sepsis. MATERIALS AND METHODS The rats received a sham operation (Sham), sham operation followed by Xuebijign injection (Sxbj), cecal ligation and puncture (CLP), or CLP followed by Xuebijing injection (Cxbj). Renal microvascular perfusion in the cortex and oxygenation were assessed at different times after sepsis induction. Renal levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and high mobility group box (HMGB)-1 were measured. Urinary TIMP-2 × IGFBP-7 and neutrophil gelatinase-associated lipocalin (NGAL) were measured as kidney biomarkers, and serum creatinine (SCr) was used to assess kidney injury. Tissue samples were stained for histologic evaluation. RESULTS The induction of sepsis increased local inflammation and decreased renal microvascular perfusion and oxygenation. Compared with the CLP group, the Cxbj group displayed improvements in microvascular perfusion and oxygenation (p < 0.05). The CLP group had significant increases in renal inflammatory biomarkers (IL-1β, IL-6, TNF-α, and HMGB-1; p < 0.05) and Xuebijing injection reduced the levels of these markers. The levels of urinary TIMP-2 × IGFBP-7, NAGL, and SCr were lower in the Cxbj group than in the CLP group (p < 0.05), and the CLP group had a higher Paller score than the Cxbj group (p < 0.05). However, the CLP and Cxbj groups had no significant difference in mortality. CONCLUSIONS This study into the early stages of sepsis in a rat model indicated that as an adjuvant therapy to antibiotics, Xuebijing injection improved renal perfusion and oxygenation, suppressed renal inflammation, and ameliorated kidney dysfunction. However, Xuebijing injection had no impact on mortality.
Collapse
Affiliation(s)
- Jingfeng Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Zhenzhou Wang
- National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration, Trauma Center, Peking University People's Hospital, Beijing, 100000, China.
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Tian Li
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Xinjie Guo
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Ran Pang
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Lei Dong
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
6
|
Remote ischemic preconditioning improves tissue oxygenation in a porcine model of controlled hemorrhage without fluid resuscitation. Sci Rep 2021; 11:10808. [PMID: 34031524 PMCID: PMC8144617 DOI: 10.1038/s41598-021-90470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) involves deliberate, brief interruptions of blood flow to increase the tolerance of distant critical organs to ischemia. This study tests the effects of limb RIPC in a porcine model of controlled hemorrhage without replacement therapy simulating an extreme field situation of delayed evacuation to definitive care. Twenty-eight pigs (47 ± 6 kg) were assigned to: (1) control, no procedure (n = 7); (2) HS = hemorrhagic shock (n = 13); and (3) RIPC + HS = remote ischemic preconditioning followed by hemorrhage (n = 8). The animals were observed for 7 h after bleeding without fluid replacement. Survival rate between animals of the RIPC + HS group and those of the HS group were similar (HS, 6 of 13[46%]-vs-RIPC + HS, 4 of 8[50%], p = 0.86 by Chi-square). Animals of the RIPC + HS group had faster recovery of mean arterial pressure and developed higher heart rates without complications. They also had less decrease in pH and bicarbonate, and the increase in lactate began later. Global oxygen delivery was higher, and tissue oxygen extraction ratio lower, in RIPC + HS animals. These improvements after RIPC in hemodynamic and metabolic status provide essential substrates for improved cellular response after hemorrhage and reduction of the likelihood of potentially catastrophic consequences of the accompanying ischemia.
Collapse
|
7
|
Impact of Obstructive Sleep Apnea on In-Hospital Outcomes of Patients with Non-ST Elevation Myocardial Infarction. HEARTS 2021. [DOI: 10.3390/hearts2010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Obstructive sleep apnea (OSA) is one of the most common breathing disorders. There are uncertainties about its impact on the in-hospital outcomes of patients who suffer acute coronary syndromes. We studied the largest publicly available all-payer inpatient healthcare database in the United States (National Inpatient Sample) to determine the effects of obstructive sleep apnea on the in-hospital outcomes of patients admitted with non-ST elevation myocardial infarction (NSTEMI). Methods: All adult patients (age ≥ 18) admitted primarily for NSTEMI between September 2010 and September 2015 were identified in the National Inpatient Sample. They were then categorized into those with OSA and those without OSA. The main outcome was in-hospital mortality. Propensity scoring and logistic regression models were created to determine the outcomes. Results: There were 1,984,432 patients with NSTEMI (weighted estimates), 123,551 (6.23%) of who had diagnosed OSA while 1,860,881 (93.77%) did not. In-hospital mortality was significantly lower in the OSA group [2.61% vs. 3.53%, adjusted odd ratio (aOR) 0.73 and confidence interval (CI) (0.66–0.81)]. Patients with OSA were also less likely to require coronary artery bypass surgery: 13.85% and 12.77% (p-value 0.0003). The patients with OSA had higher mean hospital costs compared to the patients who did not have OSA: $17,326 vs. $16,984, adjusted mean ratio (aMR) 1.02; CI (1.01–1.02). Conclusion: In-hospital mortality was lower in NSTEMI patients with diagnosed OSA compared to patients without diagnosed OSA. This appears to contrast with the widely recognized adverse effects of OSA on the cardiovascular system.
Collapse
|
8
|
Zhou H, Li L, Sun H, Li H, Wu Y, Zhang X, Zhang J. Remote Ischemic Preconditioning Attenuates Hepatic Ischemia/Reperfusion Injury after Hemorrhagic Shock by Increasing Autophagy. Int J Med Sci 2021; 18:873-882. [PMID: 33456344 PMCID: PMC7807198 DOI: 10.7150/ijms.51268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 01/23/2023] Open
Abstract
Fluid resuscitation after hemorrhagic shock is a model of systemic ischemia/reperfusion injury (SI/RI), and the liver is one of the main target organs. Ischemic preconditioning (IPC) can reduce hepatic ischemia-reperfusion injury (I/RI) via autophagy. However, whether remote ischemic preconditioning (RIPC) can alleviate the liver injury that is secondary to hemorrhagic shock and the role of autophagy in this process remain unclear. Thus, we constructed a hemorrhagic shock model in rats with or without RIPC to monitor mean arterial pressure (MAP) and investigate liver secondary injury levels via serum aminotransferase, ultrasound, HE staining and TUNEL fluorescence staining. We also detected levels of serum inflammatory factors including tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β) by enzyme-linked immunosorbent assay (ELLSA), observed autophagosomes by Transmission electron microscopy (TEM), and analyzed LC3, Beclin-1, p62 protein expression levels by immunohistochemical (IHC) and western blot (WB). We found that RIPC increased blood pressure adaptability, decreased lactate (Lac) and aminotransferase levels, and delayed the decrease in liver density. Levels of inflammatory factors TNF-α, IL-1β and apoptosis were attenuated, autophagosomes was increased in the RIPC group compared with controls. IHC and WB both revealed increased LC3 and Beclin-1 but decreased p62 protein expression levels in the RIPC group. Together, our data suggest that RIPC-activated autophagy could play a protective role against secondary liver injury following hemorrhagic shock.
Collapse
Affiliation(s)
- Hao Zhou
- Emergency Department, Nanjing Medical University First Affiliated Hospital and Jiangsu Province Hospital, NanJing City, China
| | - Lin Li
- Emergency Department, Nanjing Medical University First Affiliated Hospital and Jiangsu Province Hospital, NanJing City, China
| | - Hao Sun
- Emergency Department, Nanjing Medical University First Affiliated Hospital and Jiangsu Province Hospital, NanJing City, China
| | - Hua Li
- Emergency Department, Nanjing Medical University First Affiliated Hospital and Jiangsu Province Hospital, NanJing City, China
| | - Yuxuan Wu
- Emergency Department, Nanjing Medical University First Affiliated Hospital and Jiangsu Province Hospital, NanJing City, China
| | - Xiaomin Zhang
- Emergency Department, Nanjing Medical University First Affiliated Hospital and Jiangsu Province Hospital, NanJing City, China
| | - Jinsong Zhang
- Emergency Department, Nanjing Medical University First Affiliated Hospital and Jiangsu Province Hospital, NanJing City, China
| |
Collapse
|
9
|
Shi J, Dai W, Carreno J, Zhao L, Kloner RA. Therapeutic Hypothermia Improves Long-Term Survival and Blunts Inflammation in Rats During Resuscitation of Hemorrhagic Shock. Ther Hypothermia Temp Manag 2020; 10:237-243. [DOI: 10.1089/ther.2020.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
| | - Lifu Zhao
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
| | - Robert A. Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Dai W, Shi J, Carreno J, Kloner RA. Different Effects of Volatile and Nonvolatile Anesthetic Agents on Long-Term Survival in an Experimental Model of Hemorrhagic Shock. J Cardiovasc Pharmacol Ther 2020; 25:346-353. [PMID: 32292050 DOI: 10.1177/1074248420919221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated whether the cardioprotective, volatile gas anesthetic agent, isoflurane, could improve survival and organ function from hemorrhagic shock in an experimental rat model, compared to standard nonvolatile anesthetic agent ketamine/xylazine. METHODS Sprague Dawley rats (both genders) were randomized to receive either intraperitoneal ketamine/xylazine (K/X, 90 and 10 mg/kg; n = 12) or isoflurane (5% isoflurane induction and 2% maintenance in room air; n = 12) for anesthesia. Blood was withdrawn to maintain mean arterial blood pressure at 30 mm Hg for 1 hour, followed by 30 minutes of resuscitation with shed blood. Rats were allowed to recover and survive for 6 weeks. RESULTS During the shock phase, the total withdrawn blood volume (expressed as % of estimated total blood volume) to maintain a level of hypotension of 30 mm Hg was significantly higher in the isoflurane group (51.0% ± 1.5%) than in the K/X group (45.3% ± 1.8%; P = .023). Recovery of blood pressure during the resuscitation phase was significantly improved in the isoflurane group compared to the K/X group. The survival rate at 6 weeks was 1 (8.3%) of 12 in rats receiving K/X and 10 (83.3%) of 12 in rats receiving isoflurane (P < .001). Histology performed at 6 weeks demonstrated brain infarction in the 1 surviving rat receiving K/X; no brain infarction occurred in the 10 surviving rats that received isoflurane. No infarction was detected in heart, lung, liver, or kidneys among the surviving rats. CONCLUSIONS Isoflurane improved blood pressure response to resuscitation and resulted in significantly higher long-term survival rate.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Dai W, Shi J, Carreno J, Hale SL, Kloner RA. Improved Long-term Survival with Remote Limb Ischemic Preconditioning in a Rat Fixed-Pressure Hemorrhagic Shock Model. Cardiovasc Drugs Ther 2020; 33:139-147. [PMID: 30747397 DOI: 10.1007/s10557-019-06860-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated whether bilateral, lower limb remote ischemic preconditioning (RIPC) improved long-term survival using a rat model of hemorrhagic shock/resuscitation. METHODS Rats were anesthetized, intubated and ventilated, and randomly assigned to RIPC, induced by inflating bilateral pressure cuffs around the femoral arteries to 200 mmHg for 5 min, followed by 5-min release of the cuffs (repeated for 4 cycles), or control group (cuffs were inflated to 30 mmHg). Hemorrhagic shock was induced by withdrawing blood to a fixed mean blood pressure of 30 mmHg for 30 min, followed by 30 min of resuscitation with shed blood. Rats remained anesthetized for 1 h during which hemodynamics were monitored then they were allowed to survive for 6 weeks. RESULTS The percentage of estimated total blood volume withdrawn to maintain a level of 30 mmHg was similar in both groups. RIPC significantly increased survival at 6 weeks: 5 of 27 (19%) rats in the control group and 13 of 26 (50%; p = 0.02) rats in the RIPC group survived. Blood pressure was higher in the RIPC group. The diastolic internal dimension of the left ventricle, an indicator of circulating intravascular blood volume, was significantly larger in the RIPC group at 1 h after initiation of resuscitation compared to the control group (p = 0.04). Left ventricular function assessed by fractional shortening was comparable in both groups at 1 h after initiation of resuscitation. Blood urea nitrogen (BUN) was within normal range in the RIPC group (17.3 ± 1.2 mg/dl) but elevated in the control group (22.0 ± 1.7 mg/dl) at 48 h after shock. CONCLUSIONS RIPC significantly improved short-term survival in rats that were subjected to hemorrhagic shock, and this benefit was maintained long term. RIPC led to greater circulating intravascular blood volume in the early phase of resuscitation and improved BUN.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA. .,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA.
| | - Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA
| | - Sharon L Hale
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| |
Collapse
|
12
|
Kloner RA, Shi J, Dai W, Carreno J, Zhao L. Remote Ischemic Conditioning in Acute Myocardial Infarction and Shock States. J Cardiovasc Pharmacol Ther 2019; 25:103-109. [PMID: 31823646 DOI: 10.1177/1074248419892603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remote ischemic conditioning is the phenomenon whereby brief, nonlethal episodes of ischemia in one organ (such as a limb) protect a remote organ from ischemic necrosis induced by a longer duration of severe ischemia followed by reperfusion. This phenomenon has been reproduced by dozens of experimental laboratories and was shown to reduce the size of myocardial infarction in many but not all clinical studies. In one recent large clinical trial, remote ischemic conditioning induced by repetitive blood pressure cuff inflations on the arm did not reduce infarct size or improve clinical outcomes. This negative result may have been related in part to the overall success of early reperfusion and current adjunctive therapies, such as antiplatelet therapy, antiremodeling therapies, and low-risk patients, that may make it difficult to show any advantage of newer adjunctive therapies on top of existing therapies. One relevant area in which current outcomes are not as positive as in the treatment of heart attack is the treatment of shock, where mortality rates remain high. Recent experimental studies show that remote ischemic conditioning may improve survival and organ function in shock states, especially hemorrhagic shock and septic shock. In this study, we review the preclinical studies that have explored the potential benefit of this therapy for shock states and describe an ongoing clinical study.
Collapse
Affiliation(s)
- Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Jianru Shi
- Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Wangde Dai
- Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Juan Carreno
- Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Lifu Zhao
- Huntington Medical Research Institutes, Pasadena, CA, USA
| |
Collapse
|
13
|
Koh WU, Kim J, Lee J, Song GW, Hwang GS, Tak E, Song JG. Remote Ischemic Preconditioning and Diazoxide Protect from Hepatic Ischemic Reperfusion Injury by Inhibiting HMGB1-Induced TLR4/MyD88/NF-κB Signaling. Int J Mol Sci 2019; 20:ijms20235899. [PMID: 31771292 PMCID: PMC6929132 DOI: 10.3390/ijms20235899] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 01/23/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) is known to have a protective effect against hepatic ischemia-reperfusion (IR) injury in animal models. However, the underlying mechanism of action is not clearly understood. This study examined the effectiveness of RIPC in a mouse model of hepatic IR and aimed to clarify the mechanism and relationship of the ATP-sensitive potassium channel (KATP) and HMGB1-induced TLR4/MyD88/NF-κB signaling. C57BL/6 male mice were separated into six groups: (i) sham-operated control, (ii) IR, (iii) RIPC+IR, (iv) RIPC+IR+glyburide (KATP blocker), (v) RIPC+IR+diazoxide (KATP opener), and (vi) RIPC+IR+diazoxide+glyburide groups. Histological changes, including hepatic ischemia injury, were assessed. The levels of circulating liver enzymes and inflammatory cytokines were measured. Levels of apoptotic proteins, proinflammatory factors (TLR4, HMGB1, MyD88, and NF-κB), and IκBα were measured by Western blot and mRNA levels of proinflammatory cytokine factors were determined by RT-PCR. RIPC significantly decreased hepatic ischemic injury, inflammatory cytokine levels, and liver enzymes compared to the corresponding values observed in the IR mouse model. The KATP opener diazoxide + RIPC significantly reduced hepatic IR injury demonstrating an additive effect on protection against hepatic IR injury. The protective effect appeared to be related to the opening of KATP, which inhibited HMGB1-induced TRL4/MyD88/NF-kB signaling.
Collapse
Affiliation(s)
- Won Uk Koh
- Department of Anesthesiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (W.U.K.); (G.S.H.)
| | - Jiye Kim
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.K.); (J.L.)
| | - Jooyoung Lee
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.K.); (J.L.)
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Gyu Sam Hwang
- Department of Anesthesiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (W.U.K.); (G.S.H.)
| | - Eunyoung Tak
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.K.); (J.L.)
- Correspondence: (E.T.); (J.-G.S.); Tel.: +82-2-3010-4634 (E.T.); Tel.: +82-2-3010-3869 (J.-G.S.)
| | - Jun-Gol Song
- Department of Anesthesiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (W.U.K.); (G.S.H.)
- Correspondence: (E.T.); (J.-G.S.); Tel.: +82-2-3010-4634 (E.T.); Tel.: +82-2-3010-3869 (J.-G.S.)
| |
Collapse
|
14
|
Abstract
Microcirculation is the motor of sepsis. In the present study, we investigated whether microcirculatory alterations occur before changes of systemic hemodynamics in a rat model of cecum ligation and puncture (CLP)-induced sepsis. We further investigated renal microcirculatory changes during sepsis and compared those with buccal microcirculation. Twelve male Sprague-Dawley rats were randomized into a sham control group (n = 6) and a CLP group (n = 6). Perfused microvessel density (PVD) and microvascular flow index (MFI) were evaluated using sidestream dark field (SDF) video microscopy at baseline-60, 120, 180, 240, 300, and 360 min following CLP. A semiquantitative score was calculated for vessels of less than 20 μm, primarily representing the capillaries. Hemodynamic measurements such as cardiac output (CO), aortic pressure (AP), heart rate (HR), end-tidal CO2 (ETCO2), blood pH, and lactate were measured simultaneously. The serum cytokine interleukin 6 (IL-6) was measured at baseline-120, 240, and 360 min. In the CLP group, buccal PVD and MFI were reduced at 180 min (P < 0.05 vs. baseline); renal PVD and MFI were reduced at 180 min (P < 0.05 vs. baseline), but MAP and CO did not change until 300 min after CLP. In the rat model of peritonitis-induced sepsis, microcirculatory alterations of both peripheral mucosa and kidney occurred earlier than global hemodynamics. Monitoring the microcirculation may provide a means of early detection of circulatory failure during sepsis. The changes of renal microcirculation correlate with that of buccal during sepsis and septic shock.
Collapse
|
15
|
Remote Ischemic Postconditioning Improves Myocardial Dysfunction Via the Risk and Safe Pathways in a Rat Model of Severe Hemorrhagic Shock. Shock 2019; 49:460-465. [PMID: 28682943 DOI: 10.1097/shk.0000000000000940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Patients who have been resuscitated after severe hemorrhagic shock still have a high mortality rate. Previously published literature has suggested that remote ischemic postconditioning (RIPostC) has a cardioprotective effect, but few studies have focused on RIPostC performed after severe hemorrhagic shock. In this study, we aim to explore the effects and mechanism of RIPostC on myocardial ischemia and reperfusion injuries after hemorrhagic shock. METHODS Fifty male rats were randomized into four groups: sham, control, remote ischemic per-conditioning (RIPerC), and RIPostC. Hemorrhagic shock was induced by removing 45% of the estimated total blood volume. Remote ischemic conditioning (RIC) was induced by four cycles of limb ischemia for 5 min followed by 5 min of reperfusion, during and after resuscitation for the RIPerC and RIPostC groups, respectively. Myocardial function, survival rate, IL-6, IL-10, and SOD were detected. Myocardial damage was histopathologically analyzed, and proteins related to the reperfusion injury salvage kinase (RISK) pathway (Akt, MEK, ERK1/2) and the survival activating factor enhancement (SAFE) pathway (STAT-3 and STAT5) were measured. RESULTS Compared with the control group, the ejection fraction and myocardial performance indexes were significantly better in both RIC groups 2 h after resuscitation. Myocardial damage was attenuated and survival time increased significantly in the RIC groups. IL-6 and cardiac troponin I (cTnI) levels were notably reduced in both RIC groups. Only RIPostC had significantly increased levels of SOD and IL-10. The SAFE and RISK pathways were activated by RIPostC, whereas the effect of RIPerC was not significant. CONCLUSIONS RIPostC attenuated myocardial dysfunction and survival outcomes via the activation of the SAFE and RISK pathways in this rat model of hemorrhagic shock. RIPerC improves myocardial dysfunction, but might not do so via the SAFE and RISK pathways.
Collapse
|
16
|
Zhang L, Wang W, Qiao QQ, Bu XS, Tang LH, Jia YF, Xia ZY, Meng QT. Dexmedetomidine preconditioning protects against lung injury in hemorrhagic shock rats. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2019. [PMID: 30655009 PMCID: PMC9391882 DOI: 10.1016/j.bjane.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background and objectives Dexmedetomidine has demonstrated protective effects against lung injury in vitro. Here, we investigated whether dexmedetomidine preconditioning protected against lung injury in hemorrhagic shock rats. Methods Male Sprague-Dawley rats were randomly divided into four groups (n = 8): control group, hemorrhagic shock group, 5 ug.kg−1 dexmedetomidine (DEX1) group, and 10 ug.kg−1 dexmedetomidine (DEX2) group. Saline or dexmedetomidine were administered over 20 min. 30 min after injection, hemorrhage was initiated in the hemorrhagic shock, DEX1 and DEX2 group. Four hours after resuscitation, protein and cellular content in bronchoalveolar lavage fluid, and the lung histopathology were measured. The malondialdehyde, superoxide dismutase, Bcl-2, Bax and caspase-3 were also tested in the lung tissue. Results Compare with hemorrhagic shock group, 5 ug.kg−1 dexmedetomidine pretreatment reduced the apoptosis (2.25 ± 0.24 vs. 4.12 ± 0.42%, p < 0.05), histological score (1.06 ± 0.12 vs. 1.68 ± 0.15, p < 0.05) and protein (1.92 ± 0.38 vs. 3.95 ± 0.42 mg.mL−1, p < 0.05) and WBC (0.42 ± 0.11 vs. 0.92 ± 0.13 × 109/L, p < 0.05) in bronchoalveolar lavage fluid. Which is correlated with increased superoxide dismutase activity (8.35 ± 0.68 vs. 4.73 ± 0.44 U.mg−1 protein, p < 0.05) and decreased malondialdehyde (2.18 ± 0.19 vs. 3.28 ± 0.27 nmoL.mg−1 protein, p < 0.05). Dexmedetomidine preconditioning also increased the Bcl-2 level (0.55 ± 0.04 vs. 0.34 ± 0.05, p < 0.05) and decreased the level of Bax (0.46 ± 0.03 vs. 0.68 ± 0.04, p < 0.05), caspase-3 (0.49 ± 0.03 vs. 0.69 ± 0.04, p < 0.05). However, we did not observe any difference between the DEX1 and DEX2 groups for these (p > 0.05). Conclusion Dexmedetomidine preconditioning has a protective effect against lung injury caused by hemorrhagic shock in rats. The potential mechanisms involved are the inhibition of cell death and improvement of antioxidation. But did not show a dose-dependent effect.
Collapse
|
17
|
Zhang L, Wang W, Qiao QQ, Bu XS, Tang LH, Jia YF, Xia ZY, Meng QT. [Dexmedetomidine preconditioning protects against lung injury in hemorrhagic shock rats]. Rev Bras Anestesiol 2019; 69:160-167. [PMID: 30655009 DOI: 10.1016/j.bjan.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Dexmedetomidine has demonstrated protective effects against lung injury in vitro. Here, we investigated whether dexmedetomidine preconditioning protected against lung injury in hemorrhagic shock rats. METHODS Male Sprague-Dawley rats were randomly divided into four groups (n=8): control group, hemorrhagic shock group, 5ug.kg-1 dexmedetomidine (DEX1) group, and 10ug.kg-1 dexmedetomidine (DEX2) group. Saline or dexmedetomidine were administered over 20min. 30min after injection, hemorrhage was initiated in the hemorrhagic shock, DEX1 and DEX2 group. Four hours after resuscitation, protein and cellular content in bronchoalveolar lavage fluid, and the lung histopathology were measured. The malondialdehyde, superoxide dismutase, Bcl-2, Bax and caspase-3 were also tested in the lung tissue. RESULTS Compare with hemorrhagic shock group, 5ug.kg-1 dexmedetomidine pretreatment reduced the apoptosis (2.25±0.24 vs. 4.12±0.42%, p<0.05), histological score (1.06±0.12 vs. 1.68±0.15, p<0.05) and protein (1.92±0.38 vs. 3.95±0.42mg.mL-1, p<0.05) and WBC (0.42±0.11 vs. 0.92±0.13×109/L, p<0.05) in bronchoalveolar lavage fluid. Which is correlated with increased superoxide dismutase activity (8.35±0.68 vs. 4.73±0.44U.mg-1 protein, p<0.05) and decreased malondialdehyde (2.18±0.19 vs. 3.28±0.27nmoL.mg-1 protein, p<0.05). Dexmedetomidine preconditioning also increased the Bcl-2 level (0.55±0.04 vs. 0.34±0.05, p<0.05) and decreased the level of Bax (0.46±0.03 vs. 0.68±0.04, p<0.05), caspase-3 (0.49±0.03 vs. 0.69±0.04, p<0.05). However, we did not observe any difference between the DEX1 and DEX2 groups for these (p>0.05). CONCLUSION Dexmedetomidine preconditioning has a protective effect against lung injury caused by hemorrhagic shock in rats. The potential mechanisms involved are the inhibition of cell death and improvement of antioxidation. But did not show a dose-dependent effect.
Collapse
Affiliation(s)
- Lei Zhang
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, China
| | - Wei Wang
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, China
| | - Qian-Qian Qiao
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, China
| | - Xue-Shan Bu
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, China
| | - Ling-Hua Tang
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, China
| | - Yi-Fan Jia
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, China
| | - Zhong-Yuan Xia
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, China.
| | - Qing-Tao Meng
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, China.
| |
Collapse
|
18
|
Hu X, Wang J, Zhang L, Zhang Q, Duan X, Zhang Y. Postconditioning with sevoflurane ameliorates spatial learning and memory deficit via attenuating endoplasmic reticulum stress induced neuron apoptosis in a rat model of hemorrhage shock and resuscitation. Brain Res 2018; 1696:49-55. [PMID: 29870695 DOI: 10.1016/j.brainres.2018.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/09/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022]
Abstract
Hemorrhage shock could initiate endoplasmic reticulum stress (ERS) and then induce neuronal apoptosis. The aim of this study was to investigate whether sevoflurane postconditioning could attenuate brain injury via suppressing apoptosis induced by ERS. Seventy male rats were randomized into five groups: sham, shock, low concentration (sevo1, 1.2%), middle concentration (sevo2, 2.4%) and high concentration (sevo3, 3.6%) of sevoflurane postconditioning. Hemorrhage shock was induced by removing 40% of the total blood volume during an interval of 30 min. 1 h after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The spatial learning and memory ability of rats were measured by Morris water maze (MWM) test three days after the operation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region were assessed after the MWM test. The expression of C/EBP-homologousprotein (CHOP) and glucose-regulated protein 78 (GRP78) in the hippocampus were measured at 24 h after reperfusion. We found that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% significantly ameliorated the spatial learning and memory ability, decreased the TUNEL-positive cells, and reduced the GRP78 and CHOP expression compared with the shock group. These results suggested that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% could ameliorate spatial learning and memory deficit after hemorrhage shock and resuscitation injury via suppressing apoptosis induced by ERS.
Collapse
Affiliation(s)
- Xianwen Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingxian Wang
- Department of Anesthesiology, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, China
| | - Li Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiquan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
19
|
Abstract
Edema is typically presented as a secondary effect from injury, illness, disease, or medication, and its impact on patient wellness is nested within the underlying etiology. Therefore, it is often thought of more as an amplifier to current preexisting conditions. Edema, however, can be an independent risk factor for patient deterioration. Improper management of edema is costly not only to the patient, but also to treatment and care facilities, as mismanagement of edema results in increased lengths of hospital stay. Direct tissue trauma, disease, or inappropriate resuscitation and/or ventilation strategies result in edema formation through physical disruption and chemical messenger-based structural modifications of the microvascular barrier. Derangements in microvascular barrier function limit tissue oxygenation, nutrient flow, and cellular waste removal. Recent studies have sought to elucidate cellular signaling and structural alterations that result in vascular hyperpermeability in a variety of critical care conditions to include hemorrhage, burn trauma, and sepsis. These studies and many others have highlighted how multiple mechanisms alter paracellular and/or transcellular pathways promoting hyperpermeability. Roles for endothelial glycocalyx, extracellular matrix and basement membrane, vesiculo-vacuolar organelles, cellular junction and cytoskeletal proteins, and vascular pericytes have been described, demonstrating the complexity of microvascular barrier regulation. Understanding these basic mechanisms inside and out of microvessels aid in developing better treatment strategies to mitigate the harmful effects of excessive edema formation.
Collapse
|
20
|
Nistor M, Behringer W, Schmidt M, Schiffner R. A Systematic Review of Neuroprotective Strategies during Hypovolemia and Hemorrhagic Shock. Int J Mol Sci 2017; 18:E2247. [PMID: 29072635 PMCID: PMC5713217 DOI: 10.3390/ijms18112247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023] Open
Abstract
Severe trauma constitutes a major cause of death and disability, especially in younger patients. The cerebral autoregulatory capacity only protects the brain to a certain extent in states of hypovolemia; thereafter, neurological deficits and apoptosis occurs. We therefore set out to investigate neuroprotective strategies during haemorrhagic shock. This review was performed in accordance to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Before the start of the search, a review protocol was entered into the PROSPERO database. A systematic literature search of Pubmed, Web of Science and CENTRAL was performed in August 2017. Results were screened and evaluated by two researchers based on a previously prepared inclusion protocol. Risk of bias was determined by use of SYRCLE's risk of bias tool. The retrieved results were qualitatively analysed. Of 9093 results, 119 were assessed in full-text form, 16 of them ultimately adhered to the inclusion criteria and were qualitatively analyzed. We identified three subsets of results: (1) hypothermia; (2) fluid therapy and/or vasopressors; and (3) other neuroprotective strategies (piracetam, NHE1-inhibition, aprotinin, human mesenchymal stem cells, remote ischemic preconditioning and sevoflurane). Overall, risk of bias according to SYRCLE's tool was medium; generally, animal experimental models require more rigorous adherence to the reporting of bias-free study design (randomization, etc.). While the individual study results are promising, the retrieved neuroprotective strategies have to be evaluated within the current scientific context-by doing so, it becomes clear that specific promising neuroprotective strategies during states of haemorrhagic shock remain sparse. This important topic therefore requires more in-depth research.
Collapse
Affiliation(s)
- Marius Nistor
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany.
| | - Wilhelm Behringer
- Emergency Department, Jena University Hospital, 07747 Jena, Germany.
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, 07747 Jena, Germany.
| | - René Schiffner
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany.
- Orthopedic Department, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
21
|
singh L, Randhawa PK, Singh N, Jaggi AS. Redox signaling in remote ischemic preconditioning-induced cardioprotection: Evidences and mechanisms. Eur J Pharmacol 2017; 809:151-155. [DOI: 10.1016/j.ejphar.2017.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
|
22
|
He Z, Xu N, Qi S. Remote ischemic preconditioning improves the cognitive function of elderly patients following colon surgery: A randomized clinical trial. Medicine (Baltimore) 2017; 96:e6719. [PMID: 28445286 PMCID: PMC5413251 DOI: 10.1097/md.0000000000006719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cognitive function impairment is one of the most common complications in elderly patients after surgery, and an ideal nonpharmacological therapy has not yet been identified. Thus, we hypothesized that remote ischemic preconditioning could improve cognitive functions in elderly patients after surgery and investigated the mechanism underlying this effect. METHODS Ninety patients classified as American Society of Anaesthesiologists (ASA) physical status of 2 or 3 and aged 65 to 75 years who were scheduled for elective colon surgery under general anesthesia were randomly allocated to either a remote ischemic preconditioning group (Group R, n = 45) or a control group (Group C, n = 45). Remote ischemic preconditioning was performed by applying a static pressure of 200 mm Hg with a blood pressure cuff wrapped around the right upper limb for 3 ischemia cycles of 5 minutes each. RESULTS The Montreal Cognitive Assessment (MoCA) scores between the 2 groups were not significantly different on the day before surgery or the seventh day after surgery, but the scores on the first day after surgery (26.87 ± 0.84 vs 25.96 ± 0.85, P < .001) and third day after surgery (27.49 ± 0.66 vs 27.02 ± 0.92, P = .009) were significantly higher for Group R than those for Group C. Moreover, remote ischemic preconditioning markedly decreased the serum concentrations of the interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and S100B proteins compared with the control group (P < .001). CONCLUSION Remote ischemic preconditioning improves postoperative cognitive function in elderly patients following colon surgery. The cognitive protective effects of remote ischemic preconditioning are partially related to the inhibition of inflammation.
Collapse
|
23
|
Aggarwal S, Randhawa PK, Singh N, Jaggi AS. Role of ATP-Sensitive Potassium Channels in Remote Ischemic Preconditioning Induced Tissue Protection. J Cardiovasc Pharmacol Ther 2017; 22:467-475. [DOI: 10.1177/1074248416687873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Remote ischemic preconditioning (RIPC) is an innovative treatment strategy that alleviates ischemia-reperfusion injury, whereby short episodes of regional ischemia and reperfusion delivered to remote organs including hind limb, kidney and intestine, and so on provide protection to the heart. The RIPC is known to reduce infarct size, serum levels of cardiac enzymes, and myocardial dysfunction in various animal species as well as in patients. There have been a large number of studies suggesting that the ATP-sensitive potassium channels (KATP channel) play a significant role as a mediator or end effector in RIPC. The present review discusses the role of KATP channels and possible mechanisms in RIPC-induced cardioprotection.
Collapse
Affiliation(s)
- Sapna Aggarwal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| |
Collapse
|
24
|
Zhang L, Cao S, Deng S, Yao G, Yu T. Ischemic postconditioning and pinacidil suppress calcium overload in anoxia-reoxygenation cardiomyocytes via down-regulation of the calcium-sensing receptor. PeerJ 2016; 4:e2612. [PMID: 27833799 PMCID: PMC5101590 DOI: 10.7717/peerj.2612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/26/2016] [Indexed: 01/23/2023] Open
Abstract
Ischemic postconditioning (IPC) and ATP sensitive potassium channel (KATP) agonists (e.g. pinacidil and diazoxide) postconditioning are effective methods to defeat myocardial ischemia-reperfusion (I/R) injury, but their specific mechanisms of reducing I/R injury are not fully understood. We observed an intracellular free calcium ([Ca2+]i) overload in Anoxia/reoxygenation (A/R) cardiomyocytes, which can be reversed by KATP agonists diazoxide or pinacidil. The calcium-sensing receptor (CaSR) regulates intracellular calcium homeostasis. CaSR was reported to be involved in the I/R-induced apoptosis in rat cardiomyocytes. We therefore hypothesize that IPC and pinacidil postconditioning (PPC) reduce calcium overload in I/R cardiomyocytes by the down-regulation of CaSR. A/R model was established with adult rat caridomyocyte. mRNA and protein expression of CaSR were detected, IPC, PPC and KATP’s effects on [Ca2+]i concentration was assayed too. IPC and PPC ameliorated A/R insult induced [Ca2+]i overload in cardiomyocytes. In addition, they down-regulated the mRNA and protein level of CaSR as we expected. CaSR agonist spermine and KATP blocker glibenclamide offset IPC’s effects on CaSR expression and [Ca2+]i modulation. Our data indicate that CaSR down-regulation contributes to the mitigation of calcium overload in A/R cardiomyocytes, which may partially represents IPC and KATP’s myocardial protective mechanism under I/R circumstances.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Song Cao
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Shengli Deng
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Gang Yao
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
25
|
Copotoiu R, Cinca E, Collange O, Levy F, Mertes PM. [Pathophysiology of hemorragic shock]. Transfus Clin Biol 2016; 23:222-228. [PMID: 27567990 DOI: 10.1016/j.tracli.2016.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
This review addresses the pathophysiology of hemorrhagic shock, a condition produced by rapid and significant loss of intravascular volume, which may lead to hemodynamic instability, decreases in oxygen delivery, decreased tissue perfusion, cellular hypoxia, organ damage, and death. The initial neuroendocrine response is mainly a sympathetic activation. Haemorrhagic shock is associated altered microcirculatory permeability and visceral injury. It is also responsible for a complex inflammatory response associated with hemostasis alteration.
Collapse
Affiliation(s)
- R Copotoiu
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France
| | - E Cinca
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France
| | - O Collange
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France
| | - F Levy
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France
| | - P-M Mertes
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France.
| |
Collapse
|
26
|
Tasoulis MK, Douzinas EE. Hypoxemic reperfusion of ischemic states: an alternative approach for the attenuation of oxidative stress mediated reperfusion injury. J Biomed Sci 2016; 23:7. [PMID: 26786360 PMCID: PMC4717563 DOI: 10.1186/s12929-016-0220-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
Ischemia and reperfusion (I/R) - induced injury has been described as one of the main factors that contribute to the observed morbidity and mortality in a variety of clinical entities, including myocardial infarction, ischemic stroke, cardiac arrest and trauma. An imbalance between oxygen demand and supply, within the organ beds during ischemia, results in profound tissue hypoxia. The subsequent abrupt oxygen re-entry upon reperfusion, may lead to a burst of oxidative aggression through production of reactive oxygen species by the primed cells. The predominant role of oxidative stress in the pathophysiology of I/R mediated injury, has been well established. A number of strategies that target the attenuation of the oxidative burst have been tested both in the experimental and the clinical setting. Despite these advances, I/R injury continues to be a major problem in everyday medical practice. The aim of this paper is to review the existing literature regarding an alternative approach, termed hypoxemic reperfusion, that has exhibited promising results in the attenuation of I/R injury, both in the experimental and the clinical setting. Further research to clarify its underlying mechanisms and to assess its efficacy in the clinical setting is warranted.
Collapse
Affiliation(s)
- Marios-Konstantinos Tasoulis
- 2nd Department of Surgery, National and Kapodistrian University of Athens, Medical School, Aretaieion University Hospital, 76 Vas. Sofias Ave, 11528, Athens, Greece.
| | - Emmanuel E Douzinas
- 3rd Department of Critical Care Medicine, National and Kapodistrian University of Athens, Medical School, Evgenideio Hospital, 20 Papadiamantopoulou St., 11528, Athens, Greece.
| |
Collapse
|
27
|
EXP CLIN TRANSPLANTExp Clin Transplant 2015; 13. [DOI: 10.6002/ect.2014.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Mohamed MSA. Antagonizing reactive oxygen species during ex vivo lung perfusion. Am J Physiol Lung Cell Mol Physiol 2014; 307:L908. [DOI: 10.1152/ajplung.00282.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Antioxidant function of steen solution. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:578353. [PMID: 25505936 PMCID: PMC4258325 DOI: 10.1155/2014/578353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/10/2014] [Indexed: 11/30/2022]
|
30
|
What’s New in Shock? September 2014. Shock 2014; 42:177-8. [DOI: 10.1097/shk.0000000000000220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|