1
|
Luo J, Zhang C, Chen D, Chang T, Chen S, Lin Z, Yi C, Tang ZH. Tim-3 pathway dysregulation and targeting in sepsis-induced immunosuppression. Eur J Med Res 2024; 29:583. [PMID: 39696711 DOI: 10.1186/s40001-024-02203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Sepsis is a major medical problem which causes millions of deaths worldwide every year. The host immune response in sepsis is characterized by acute inflammation and a simultaneous state of immunosuppression. In the later stage of sepsis, immunosuppression is a crucial factor that increases the susceptibility of septic patients to secondary infection and mortality. It is characterized by T cell exhaustion, excessive production of anti-inflammatory cytokines, hyperproliferation of immune suppressor cells and aberrant expression of immune checkpoint molecules. T cell immunoglobulin and mucin domain 3 (Tim-3), an immune checkpoint molecule, is found on the surface of various cells, including macrophages, NK cells, NKT cells, and T cells. There are four different ligands for Tim-3, and accumulating evidence indicates that Tim-3 and its ligands play a crucial role in regulating immune cell dysfunction during sepsis. Anti-Tim-3 antibodies have been applied in the field of cancer immunotherapy and have achieved positive therapeutic effects in some clinical trials. However, the therapeutic efficacy of Tim-3 blockade is still controversial in animal models of sepsis. These challenges highlight the need for a deeper understanding of Tim-3 signaling in sepsis. This review examines the comprehensive effect of Tim-3 signaling in the development of sepsis-induced immunosuppression and the therapeutic efficacy of Tim-3 blockade.
Collapse
Affiliation(s)
- Jialiu Luo
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Lin
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Chen S, Zhang C, Luo J, Lin Z, Chang T, Dong L, Chen D, Tang ZH. Macrophage activation syndrome in Sepsis: from pathogenesis to clinical management. Inflamm Res 2024; 73:2179-2197. [PMID: 39404874 DOI: 10.1007/s00011-024-01957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Sepsis represents a significant global health and hygiene challenge. Excessive activation of macrophages in sepsis can result in certain patients displaying characteristics akin to those observed in Macrophage Activation Syndrome (MAS). MAS represents a grave immune system disorder characterized by persistent and severe inflammation within the body. In the context of sepsis, MAS presents atypically, leading some researchers to refer to it as Macrophage Activation-Like Syndrome (MALS). However, there are currently no effective treatment measures for this situation. The purpose of this article is to explore potential treatment methods for sepsis-associated MALS. OBJECTIVE The objective of this review is to synthesize the specific pathophysiological mechanisms and treatment strategies of MAS to investigate potential therapeutic approaches for sepsis-associated MALS. METHOD We searched major databases (including PubMed, Web of Science, and Google Scholar etc.) for literature encompassing macrophage activation syndrome and sepsis up to Mar 2024 and combined with studies found in the reference lists of the included studies. CONCLUSION We have synthesized the underlying pathophysiological mechanism of MALS in sepsis, and then summarized the diagnostic criteria and the effects of various treatment modalities utilized in patients with MAS or MALS. In both scenarios, heterogeneous treatment responses resulting from identical treatment approaches were observed. The determination of whether the patient is genuinely experiencing MALS significantly impacts the ultimate outcomes of therapeutic efficacy. In order to tackle this concern, additional clinical trials and research endeavors are imperative.
Collapse
Affiliation(s)
- Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jialiu Luo
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Lin
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Dong
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Zhang C, Chen D, Wan Q, Yin G, Liu Y, Luo J, Chen S, Lin Z, Gu S, Li H, Chang T, Dong L, Zhang P, Tang Z. From trauma to chronicity: Understanding the incidence and early immune changes of chronic complications in polytrauma patients. Sci Prog 2024; 107:368504241305901. [PMID: 39686584 DOI: 10.1177/00368504241305901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Polytrauma is a complex condition associated with poor outcomes and high mortality rates resulting from severe damage and complicated complications. This study sought to ascertain the incidence of chronic complications in polytrauma patients, as well as the early immune changes and risk factors. METHODS A multicenter, prospective and observational cohort study was conducted at the emergency surgery or traumatic intensive care unit (TICU) of the Advanced Trauma Center from August 2020 to July 2023. A total of 2033 consecutive trauma patients were included in the study. In the first 1, 7, and 14 days after admission, flow cytometry and immunoassay kits were used to examine cytokine release and lymphocyte count. RESULTS Trauma patients were reported 33.8% (687/2033) chronic complication rates, with monotrauma patients reported 8.1% (55/683) and polytrauma patients reported 59.4% (802/1350). And the four most frequent chronic complications in polytrauma patients were chronic musculoskeletal pain (30.4%), post-traumatic osteoarthritis (27.2%), chronic wound (21.6%), and chronic lung injury (14.1.%) .There were significant differences in lymphocyte ratios and cytokine levels, at 1, 7, and 14 day of admission between chronic complication groups (CCP) and not chronic complication groups (N-CCP) in polytrauma. Polytrauma patients with characteristics of higher ratio of Ts7d ratio (95% CI: 2.01-6.21), Treg14d (95% CI: 1.12-5.43) and level of IL-67d (95% CI: 1.22-4.43), TNF-α7d (95% CI: 1.05-3.83), IL-1014d (95% CI: 2.01-6.84) were found to have a higher likelihood of experiencing a chronic complication. Conversely, a higher ratio of Tc1d (95% CI: 0.53-0.86), Th1d (95% CI: 0.64-0.95) and Th/Ts14d (95% CI: 0.21-0.64) were identified as independent protective factors against a chronic complication event. CONCLUSION Polytrauma patients exhibit a notable prevalence of chronic complications. Some immune and inflammatory indicators can be observed early in combination after injury to predict the risk of chronic complications after polytrauma.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wan
- Department of Trauma Surgery, Trauma Center, Xiantao First people's Hospital, Xiantao, China
| | - Gang Yin
- Department of Trauma Surgery, Trauma Center, Tianmen First People's Hospital, Hubei University of Science and Technology, Tianmen, China
| | - Yang Liu
- Department of Emergency and Intensive Care, Trauma Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jialiu Luo
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Lin
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaipeng Gu
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Dong
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peidong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wang C, Liu J, Wu Q, Wang Z, Hu B, Bo L. The role of TIM-3 in sepsis: a promising target for immunotherapy? Front Immunol 2024; 15:1328667. [PMID: 38576606 PMCID: PMC10991702 DOI: 10.3389/fimmu.2024.1328667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis remains a significant cause of mortality and morbidity worldwide, with limited effective treatment options. The T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) has emerged as a potential therapeutic target in various immune-related disorders. This narrative review aims to explore the role of TIM-3 in sepsis and evaluate its potential as a promising target for immunotherapy. We discuss the dynamic expression patterns of TIM-3 during sepsis and its involvement in regulating immune responses. Furthermore, we examine the preclinical studies investigating the regulation of TIM-3 signaling pathways in septic models, highlighting the potential therapeutic benefits and challenges associated with targeting TIM-3. Overall, this review emphasizes the importance of TIM-3 in sepsis pathogenesis and underscores the promising prospects of TIM-3-based immunotherapy as a potential strategy to combat this life-threatening condition.
Collapse
Affiliation(s)
- Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinhai Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Wu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Wu H, Tang T, Deng H, Chen D, Zhang C, Luo J, Chen S, Zhang P, Yang J, Dong L, Chang T, Tang ZH. Immune checkpoint molecule Tim-3 promotes NKT cell apoptosis and predicts poorer prognosis in Sepsis. Clin Immunol 2023; 254:109249. [PMID: 36736642 DOI: 10.1016/j.clim.2023.109249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Sepsis is a leading cause of death among critically ill patients, which is defined as life-threatening organ dysfunction caused by a deregulated host immune response to infection. Immune checkpoint molecule Tim-3 plays important and complex roles in regulating immune responses and in inducing immune tolerance. Although immune checkpoint blockade would be expected as a promising therapeutic strategy for sepsis, but the underlying mechanism remain unknown, especially under clinical conditions. METHODS Tim-3 expression and apoptosis in NKT cells were compared in septic patients (27 patients with sepsis and 28 patients with septic shock). Phenotypic and functional characterization of Tim-3+ NKT cells were analysed, and then the relationship between Tim-3 + NKT cells and clinical prognosis were investigated in septic patients. α-lactose (Tim-3/Galectin-9 signalling inhibitor) and Tim-3 mutant mice (targeting mutation of the Tim-3 cytoplasmic domain) were utilized to evaluate the protective effect of Tim-3 signalling blockade following septic challenge. RESULTS There is a close correlation between Tim-3 expression and the functional status of NKT cells in septic patients, Upregulated Tim-3 expression promoted NKT cell activation and apoptosis during the early stage of sepsis, and it was associated with worse disease severity and poorer prognosis in septic patients. Blockade of the Tim-3/Galectin-9 signal axis using α-lactose inhibited in vitro apoptosis of NKT cells isolated from septic patients. Impaired activity of Tim-3 protected mice following septic challenge. CONCLUSIONS Overall, these findings demonstrated that immune checkpoint molecule Tim-3 in NKT cells plays a critical role in the immunopathogenesis of septic patients. Blockade of immune checkpoint molecule Tim-3 may be a promising immunomodulatory strategy in future clinical practice for the management of sepsis.
Collapse
Affiliation(s)
- Han Wu
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tingxuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hai Deng
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Orthopedic Trauma, Wuhan Fourth Hospital, Wuhan 430030, China
| | - Deng Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Zhang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialiu Luo
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shunyao Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peidong Zhang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingzhi Yang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liming Dong
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Teding Chang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhao-Hui Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Ma H, Ren S, Meng Q, Su B, Wang K, Liu Y, Wang J, Ding D, Li X. Role of Tim-3 in COVID-19: a potential biomarker and therapeutic target. Arch Virol 2023; 168:213. [PMID: 37522944 DOI: 10.1007/s00705-023-05842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023]
Abstract
T cell immunoglobulin and mucin domain containing protein 3 (Tim-3), an immune checkpoint, is important for maintaining immune tolerance. There is increasing evidence that Tim-3 is aberrantly expressed in patients with COVID-19, indicating that it may play an important role in COVID-19. In this review, we discuss the altered expression and potential role of Tim-3 in COVID-19. The expression of Tim-3 and its soluble form (sTim-3) has been found to be upregulated in COVID-19 patients. The levels of Tim-3 on T cells and circulating sTim-3 have been shown to be associated with the severity of COVID-19, suggesting that this protein could be a potential biomarker of COVID-19. Moreover, this review also highlights the potential of Tim-3 as a therapeutic target of COVID-19.
Collapse
Affiliation(s)
- Haodong Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Shengju Ren
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Qingpeng Meng
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Boyuan Su
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Kun Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - YiChen Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Junpeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 450003, Zhengzhou, Henan, China.
| | - Degang Ding
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 450003, Zhengzhou, Henan, China.
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, 450001, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Yang J, Chang T, Tang L, Deng H, Chen D, Luo J, Wu H, Tang T, Zhang C, Li Z, Dong L, Yang XP, Tang ZH. Increased Expression of Tim-3 Is Associated With Depletion of NKT Cells In SARS-CoV-2 Infection. Front Immunol 2022; 13:796682. [PMID: 35250975 PMCID: PMC8889099 DOI: 10.3389/fimmu.2022.796682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
In the ongoing coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), natural killer T (NKT) cells act as primary initiators of immune responses. However, a decrease of circulating NKT cells has been observed in COVID-19 different stages, of which the underlying mechanism remains to be elucidated. Here, by performing single-cell RNA sequencing analysis in three large cohorts of COVID-19 patients, we found that increased expression of Tim-3 promotes depletion of NKT cells during the progression stage of COVID-19, which is associated with disease severity and outcome of patients with COVID-19. Tim-3+ NKT cells also expressed high levels of CD147 and CD26, which are potential SARS-CoV-2 spike binding receptors. In the study, Tim-3+ NKT cells showed high enrichment of apoptosis, higher expression levels of mitochondrial genes and caspase genes, with a larger pseudo time value. In addition, Tim-3+ NKT cells in COVID-19 presented a stronger capacity to secrete IFN-γ, IL-4 and IL-10 compared with healthy individuals, they also demonstrated high expression of co-inhibitory receptors such as PD-1, CTLA-4, and LAG-3. Moreover, we found that IL-12 secreted by dendritic cells (DCs) was positively correlated with up-regulated expression of Tim-3 in NKT cells in COVID-19 patients. Overall, this study describes a novel mechanism by which up-regulated Tim-3 expression induced the depletion and dysfunction of NKT cells in COVID-19 patients. These findings not only have possible implications for the prediction of severity and prognosis in COVID-19 but also provide a link between NKT cells and future new therapeutic strategies in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jingzhi Yang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Teding Chang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Liangsheng Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Hai Deng
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Deng Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Jialiu Luo
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Han Wu
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - TingXuan Tang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Cong Zhang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Zhenwen Li
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Liming Dong
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Wuhan, China
| |
Collapse
|
8
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
9
|
Catafal-Tardos E, Baglioni MV, Bekiaris V. Inhibiting the Unconventionals: Importance of Immune Checkpoint Receptors in γδ T, MAIT, and NKT Cells. Cancers (Basel) 2021; 13:cancers13184647. [PMID: 34572874 PMCID: PMC8467786 DOI: 10.3390/cancers13184647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary All conventional major histocompatibility complex (MHC)-restricted T cells transiently express immune checkpoint/inhibitory receptors (ICRs) following activation as a means to counter-regulate overactivation. However, tumors promote chronic ICR expression rendering T cells chronically unresponsive or “exhausted”. Checkpoint inhibitor (CPI) therapy targets and blocks ICRs, restoring T cell activation and anti-tumor immunity. However, CPI therapy often fails, partly because of the tumor’s many abilities to inhibit MHC-driven T cell responses. In this regard, our immune system contains an arsenal of unconventional non-MHC-restricted T cells, whose importance in anti-tumor immunity is rapidly gaining momentum. There is currently little knowledge as to whether unconventional T cells can get exhausted and how CPI therapy affects them. In this article we review the current understanding of the role of ICRs in unconventional T cell biology and discuss the importance of targeting these unique immune cell populations for CPI therapy. Abstract In recent years, checkpoint inhibitor (CPI) therapy has shown promising clinical responses across a broad range of cancers. However, many patients remain unresponsive and there is need for improvement. CPI therapy relies on antibody-mediated neutralization of immune inhibitory or checkpoint receptors (ICRs) that constitutively suppress leukocytes. In this regard, the clinical outcome of CPI therapy has primarily been attributed to modulating classical MHC-restricted αβ T cell responses, yet, it will inevitably target most lymphoid (and many myeloid) populations. As such, unconventional non-MHC-restricted gamma delta (γδ) T, mucosal associated invariant T (MAIT) and natural killer T (NKT) cells express ICRs at steady-state and after activation and may thus be affected by CPI therapies. To which extent, however, remains unclear. These unconventional T cells are polyfunctional innate-like lymphocytes that play a key role in tumor immune surveillance and have a plethora of protective and pathogenic immune responses. The robust anti-tumor potential of γδ T, MAIT, and NKT cells has been established in a variety of preclinical cancer models and in clinical reports. In contrast, recent studies have documented a pro-tumor effect of innate-like T cell subsets that secrete pro-inflammatory cytokines. Consequently, understanding the mechanisms that regulate such T cells and their response to CPI is critical in designing effective cancer immunotherapies that favor anti-tumor immunity. In this Review, we will discuss the current understanding regarding the role of immune checkpoint regulation in γδ T, MAIT, and NKT cells and its importance in anti-cancer immunity.
Collapse
|
10
|
Abstract
Sepsis is a life-threatening syndrome with a high incidence and a weighty economic burden. The cytokines storm in the early stage and the state of immunosuppression in the late stage contribute to the mortality of sepsis. Immune checkpoints expressed on lymphocytes and APCs, including CD28, CTLA-4, CD80, CD86, PD-1 and PD-L1, CD40 and CD40L, OX40 and OX40L, 4-1BB and 4-1BBL, BTLA, TIM family, play significant roles in the pathogenesis of sepsis through regulating the immune disorder. The specific therapies targeting immune checkpoints exhibit great potentials in the animal and preclinical studies, and further clinical trials are planning to implement. Here, we review the current literature on the roles played by immune checkpoints in the pathogenesis and treatment of sepsis. We hope to provide further insights into this novel immunomodulatory strategy.
Collapse
Affiliation(s)
- Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Li H, Liu R, Zhang R, Zhang S, Wei Y, Zhang L, Zhou H, Yang C. Protective Effect of Arbidol Against Pulmonary Fibrosis and Sepsis in Mice. Front Pharmacol 2021; 11:607075. [PMID: 33584285 PMCID: PMC7873045 DOI: 10.3389/fphar.2020.607075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
From the perspective of epidemiology, viral immunology and current clinical research, pulmonary fibrosis may become one of the complications of patients with Coronavirus Disease 2019 (COVID-19). Cytokine storm is a major cause of new coronavirus death. The purpose of this study was to explore the effects of antiviral drug arbidol on cytokine storm and pulmonary fibrosis. Here, we use a mouse model of bleomycin-induced pulmonary fibrosis and a mouse model of fecal dilution-induced sepsis to evaluate the effects of arbidol on pulmonary fibrosis and cytokine storm. The results showed that arbidol significantly reduced the area of pulmonary fibrosis and improved lung function (reduced inspiratory resistance, lung dynamic compliance and forced vital capacity increased). Treatment with arbidol promoted reduced sepsis severity 48 h after sepsis induction, based on weight, murine sepsis score and survival rate. Arbidol observably alleviates inflammatory infiltrates and injury in the lungs and liver. Finally, we also found that arbidol reduced serum levels of pro-inflammatory factors such as TNF-α and IL-6 induced by fecal dilution. In conclusion, our results indicate that arbidol can alleviate the severity of pulmonary fibrosis and sepsis, and provide some reference for the treatment of cytokine storm and sequelae of pulmonary fibrosis in patients with COVID-19.
Collapse
Affiliation(s)
- Hailong Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Rui Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ruotong Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shanshan Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yiying Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
12
|
Zhu T, Zhao Y, Hu H, Zheng Q, Luo X, Ling Y, Ying Y, Shen Z, Jiang P, Shu Q. TRPM2 channel regulates cytokines production in astrocytes and aggravates brain disorder during lipopolysaccharide-induced endotoxin sepsis. Int Immunopharmacol 2019; 75:105836. [PMID: 31450153 DOI: 10.1016/j.intimp.2019.105836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 01/02/2023]
Abstract
Sepsis is one of the most significant challenges in intensive care units, which is associated with increased morbidity and mortality. Sepsis-associated encephalopathy (SAE) is a severe complication which can cause death and serious disabilities. Calcium signaling in astrocyte is essential for cellular activation and the potential resolution of infection or inflammation in SAE patients. The transient receptor potential melastatin 2 (TRPM2) channel has been identified as a unique fusion of a Ca2+-permeable nonselective cation channel, which plays an important role in inflammation and immune response. Because of its role as an oxidative stress sensor in astrocytes, we investigated the function of TRPM2 in inflammation mediators (interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α) release, Bcl-2/E1B-19 K-interacting protein 3 (BNIP3), apoptosis inducing factor (AIF) and Endonuclease G (Endo G) expression. We showed that TRPM2-KO mice, when intraperitoneally (i.p) injected with LPS, exhibited better neurologic assessment scores and decreased inflammatory injury in hippocampal neurons compared with wild-type (WT) mice. The absence of TRPM2 triggered less production of inflammatory mediators (IL-1β, IL-6, TNF-α) and decreased apoptosis related proteins (BNIP3, AIF, Endo G) expressions in response to LPS induced sepsis. Furthermore, TRPM2-deficient astrocytes (transfected with TRPM2 siRNA) upon LPS stimulation also induced decreased IL-1β, IL-6 and TNF-α level. Our data suggested that decreased production of inflammatory cytokines and apoptosis related proteins with TRPM2 deletion could regulate inflammatory stress and decrease inflammatory injury in hippocampal neurons, and consequently, ameliorate brain disorder.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yisha Zhao
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang, China
| | - Hui Hu
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pediatrics, Lishui Maternal and Child Health Care Hospital, Lishui, Zhejiang, China
| | - Qianqian Zheng
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Peditrica, Sanmen People's Hospital, Sanmen, Zhejiang, China
| | - Xiaoying Luo
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yinjie Ling
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Peditrica, first people's hospital of Huzhou, Huzhou, Zhejiang, China
| | - Yingchao Ying
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheng Shen
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peifang Jiang
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qiang Shu
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Kim EY, Oldham WM. Innate T cells in the intensive care unit. Mol Immunol 2019; 105:213-223. [PMID: 30554082 PMCID: PMC6331274 DOI: 10.1016/j.molimm.2018.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/22/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022]
Abstract
Rapid onset of acute inflammation is a hallmark of critical illnesses that bring patients to the intensive care unit (ICU). In critical illness, innate T cells rapidly reach full activation and drive a robust acute inflammatory response. As "cellular adjuvants," innate T cells worsen inflammation and mortality in several common critical illnesses including sepsis, ischemia-reperfusion injury, stroke, and exacerbations of respiratory disease. Interestingly, innate T cell subsets can also promote a protective and anti-inflammatory response in sepsis, ischemia-reperfusion injury, and asthma. Therapies that target innate T cells have been validated in several models of critical illness. Here, we review the role of natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells and γδ T cells in clinical and experimental critical illness.
Collapse
Affiliation(s)
- Edy Yong Kim
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States.
| | - William M Oldham
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
14
|
Xu Y, Wang Z, Du X, Liu Y, Song X, Wang T, Tan S, Liang X, Gao L, Ma C. Tim-3 blockade promotes iNKT cell function to inhibit HBV replication. J Cell Mol Med 2018; 22:3192-3201. [PMID: 29602251 PMCID: PMC5980221 DOI: 10.1111/jcmm.13600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
Increased expression of T cell immunoglobulin and mucin domain-3 (Tim-3) on invariant natural killer T (iNKT) cells is reported in chronic hepatitis B virus (HBV) infection. However, whether Tim-3 regulates iNKT cells in chronic HBV condition remains unclear. In this study, our results showed that the expression of Tim-3 was up-regulated on hepatic iNKT cells from HBV-transgenic (Tg) mice or iNKT cells stimulated with α-galactosylceramide (α-Galcer). Compared with Tim-3- iNKT cells, Tim-3+ iNKT cells expressed more IFN-γ, IL-4 and CD107a, indicating a strong relationship between Tim-3 and iNKT cell activation. Constantly, treatment of Tim-3 blocking antibodies significantly enhanced the production of IFN-γ, TNF-α, IL-4 and CD107a in iNKT cells both in vivo and in vitro. This Tim-3- mediated suppression of iNKT cells was further confirmed in Tim-3 knockout (KO) mice. Moreover, Tim-3 blockade promoted α-Galcer-triggered inhibition of HBV replication, displaying as the decreased HBV DNA and HBsAg level in serum, and down-regulated pgRNA expression in liver tissues. Collectively, our data, for the first time, demonstrated the potential role of Tim-3 blockade in promoting iNKT cell-mediated HBV inhibition. Therefore, combination of α-Galcer with Tim-3 blockade might be a promising approach in chronic hepatitis B therapy.
Collapse
Affiliation(s)
- Yong Xu
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Xianhong Du
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Yuan Liu
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of EducationKey Laboratory of Infection and Immunity of Shandong ProvinceDepartment of ImmunologySchool of Basic Medical SciencesShandong UniversityJinanChina
| |
Collapse
|
15
|
Wei Z, Li P, Yao Y, Deng H, Yi S, Zhang C, Wu H, Xie X, Xia M, He R, Yang XP, Tang ZH. Alpha-lactose reverses liver injury via blockade of Tim-3-mediated CD8 apoptosis in sepsis. Clin Immunol 2018; 192:78-84. [PMID: 29689313 DOI: 10.1016/j.clim.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/23/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
In sepsis, the liver plays a crucial role in regulating immune responses and is also a target organ for immune-related injury. Despite the critical function of CD8+ T cells against opportunistic viral infections, the CD8 immune response in the liver during sepsis remains elusive. Here we found that Tim-3 is highly up-regulated in liver CD8+ T cells in a mouse cecal ligation and puncture model and in peripheral blood CD8+ T cells of human patients with sepsis. The expression of Tim-3 in liver CD8+ T cells displayed a bi-phasic pattern and deletion of Tim-3 led to reduction of CD8+ T cell apoptosis. Administration of α-lactose, a molecule with a similar structure to galactin-9, reduced Tim-3 expression and liver injury in sepsis. Our results demonstrate that targeting Tim-3 to boost CD8+ T cell immune response may offer an improved outcome in patients with sepsis.
Collapse
Affiliation(s)
- Zhengping Wei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pingfei Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Yao
- Department of Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hai Deng
- Department of Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shengwu Yi
- Department of Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Zhang
- Department of Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Wu
- Department of Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuxiu Xie
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minghui Xia
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhao-Hui Tang
- Department of Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
16
|
Pan LL, Deng YY, Wang R, Wu C, Li J, Niu W, Yang Q, Bhatia M, Gudmundsson GH, Agerberth B, Diana J, Sun J. Lactose Induces Phenotypic and Functional Changes of Neutrophils and Macrophages to Alleviate Acute Pancreatitis in Mice. Front Immunol 2018; 9:751. [PMID: 29719535 PMCID: PMC5913286 DOI: 10.3389/fimmu.2018.00751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is one common clinical acute abdominal disease, for which specific pharmacological or nutritional therapies remain elusive. Lactose, a macronutrient and an inducer of host innate immune responses, possesses immune modulatory functions. The current study aimed to investigate potential modulatory effects of lactose and the interplay between the nutrient and pancreatic immunity during experimentally induced AP in mice. We found that either prophylactic or therapeutic treatment of lactose time-dependently reduced the severity of AP, as evidenced by reduced pancreatic edema, serum amylase levels, and pancreatic myeloperoxidase activities, as well as by histological examination of pancreatic damage. Overall, lactose promoted a regulatory cytokine milieu in the pancreas and reduced infiltration of inflammatory neutrophils and macrophages. On acinar cells, lactose was able to suppress caerulein-induced inflammatory signaling pathways and to suppress chemoattractant tumor necrosis factor (TNF)-α and monocyte chemotactic protein-1 production. Additionally, lactose acted on pancreas-infiltrated macrophages, increasing interleukin-10 and decreasing tumor necrosis factor alpha production. Notably, lactose treatment reversed AP-associated infiltration of activated neutrophils. Last, the effect of lactose on neutrophil infiltration was mimicked by a galectin-3 antagonist, suggesting a potential endogenous target of lactose. Together, the current study demonstrates an immune regulatory effect of lactose to alleviate AP and suggests its potential as a convenient, value-added therapeutic macronutrient to control AP, and lower the risk of its systemic complications.
Collapse
Affiliation(s)
- Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Yuan-Yuan Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruxing Wang
- School of Medicine, Jiangnan University, Wuxi, China.,Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenying Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qin Yang
- School of Medicine, Jiangnan University, Wuxi, China
| | - Madhav Bhatia
- Inflammation Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | | | - Birgitta Agerberth
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institute Necker-Enfants Malades (INEM), Centre National de la Recherche Scienctifique, Unité 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
What's New in Shock, March 2017? Shock 2017; 47:261-263. [PMID: 28195968 DOI: 10.1097/shk.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|