1
|
Li H, Feng W, Wang Q, Li C, Zhu J, Sun T, Wu J. Inclusion of interleukin-6 improved the performance of postoperative acute lung injury prediction for patients undergoing surgery for thoracic aortic disease. Front Cardiovasc Med 2023; 10:1093616. [PMID: 37636294 PMCID: PMC10457658 DOI: 10.3389/fcvm.2023.1093616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background We studied acute lung injury (ALI) in thoracic aortic disease (TAD) patients and investigated the predictive effect of interleukin-6 (IL-6) in acute lung injury after thoracic aortic disease. Methods Data on 188 TAD patients, who underwent surgery between January 2016 to December 2021 at our hospital, were enrolled in. We analyzed acute lung injury using two patient groups. Patients with No-ALI were 65 and those with ALI were 123. Univariate logistic, LASSO binary logistic regression model and multivariable logistic regression analysis were performed for acute lung injury. Results Preoperative IL-6 level was lower (15.80[3.10,43.30] vs. 47.70[21.40,91.60] pg/ml, p < 0.001) in No-ALI group than in ALI group. The cut-off points, determined by the ROC curve, were preoperative IL-6 > 18 pg/ml (area under the curve: AUC = 0.727). Univariate logistic regression analysis showed 19 features for TAD appeared to be early postoperative risk factors of acute lung injury. Using LASSO binary logistic regression, 19 features were reduced to 9 potential predictors (i.e., Scrpost + PLTpost + CPB > 182 min + D-dimerpost + D-dimerpre + Hypertension + Age > 58 years + IL6 > 18 pg/ml + IL6). Multivariable logistic regression analysis showed that Postoperative creatinine, CPB > 182 min and IL-6 > 18 pg/ml were early postoperative risk factors for ALI after TAD, and the odds ratios (ORs) of postoperative creatinine, CPB > 182 min and IL-6 > 18 pg/ml were 1.006 (1.002-1.01), 4.717 (1.306-19.294) and 2.96 (1.184-7.497), respectively. When postoperative creatinine, CPB > 182 min and IL-6 > 18 pg/ml (AUC = 0.819), the 95% confidence interval [CI] was 0.741 to 0.898. Correction curves were nearly diagonal, suggesting that the nomogram fit well. The DCA curve was then drawn to demonstrate clinical applicability. The DCA curve showed that the threshold probability of a patient is in the range of 30% to 90%. Conclusions The inclusion of interleukin-6 demonstrated good performance in predicting ALI after TAD surgery.
Collapse
Affiliation(s)
- Huili Li
- Correspondence: Huili Li Jinlin Wu
| | | | | | | | | | | | - Jinlin Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
2
|
He Y, Zhang Y, Wu H, Luo J, Cheng C, Zhang H. The role of annexin A1 peptide in regulating PI3K/Akt signaling pathway to reduce lung injury after cardiopulmonary bypass in rats. Perfusion 2023; 38:320-329. [PMID: 34951334 DOI: 10.1177/02676591211052162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cardiopulmonary bypass (CPB) -induced lung ischemia-reperfusion (I/R) injury remains a large challenge in cardiac surgery; up to date, no effective treatment has been found. Annexin A1 (AnxA1) has an anti-inflammatory effect, and it has been proven to have a protective effect on CPB-induced lung injury. However, the specific mechanism of AnxA1 in CPB-induced lung injury is not well studied. Therefore, we established a CPB-induced lung injury model to explore the relevant mechanism of AnxA1 and try to find an effective treatment for lung protection. METHODS Male rats were randomized into five groups (n = 6, each): sham (S group), I/R exposure (I/R group), I/R + dimethyl sulfoxide (D group), I/R + Ac2-26 (AnxA1 peptide) (A group), and I/R + LY294002 (a PI3K specific inhibitor) (AL group). Arterial blood gas analysis and calculation of the oxygenation index, and respiratory index were performed. The morphological changes in lung tissues were observed under light and electron microscopes. TNF-α and IL-6 and total protein in lung bronchoalveolar lavage fluid were detected via enzyme-linked immunosorbent assay. The expressions of PI3K, Akt, and NF-κB (p65) as well as p-PI3K, p-Akt, p-NF-κB (p65), and AnxA1 were detected via western blotting. RESULTS Compared with the I/R group, the A group showed the following: lower lung pathological damage score; decreased expression of IL-6 and total protein in the bronchoalveolar lavage fluid, and TNF-α in the lung; increased lung oxygenation index; and improved lung function. These imply the protective role of Ac2-26, and show that LY294002 inhibited the ameliorative preconditioning effect of Ac2-26. CONCLUSION This finding suggested that the AnxA1 peptide Ac2-26 decreased the inflammation reaction and CPB-induced lung injury in rats, the lung protective effects of AnxA1may be correlated with the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yunzi He
- Department of Anesthesiology, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, 66367Zunyi Medical University, Zunyi, China
| | - Yuanjie Zhang
- Department of Anesthesiology, The Fourth People's Hospital of Zunyi, Zunyi, China
| | - Hanhua Wu
- Department of Anesthesiology, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junli Luo
- Department of Anesthesiology, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chi Cheng
- Guizhou Key Laboratory of Anesthesia and Organ Protection, 66367Zunyi Medical University, Zunyi, China
| | - Hong Zhang
- Department of Anesthesiology, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
High-fat diet-induced obesity affects alpha 7 nicotine acetylcholine receptor expressions in mouse lung myeloid cells. Sci Rep 2020; 10:18368. [PMID: 33110180 PMCID: PMC7592050 DOI: 10.1038/s41598-020-75414-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Ample evidence indicates that obesity causes dysfunctions in the lung. Previous studies also show that cholinergic anti-inflammatory pathways play crucial roles in obesity-induced chronic inflammation via α7 nicotinic acetylcholine receptor (α7nAChR) signaling. However, it remains unclear whether and how obesity affects the expressions of α7nAChR in myeloid cells in the lung. To address this question, we treated regular chow diet-fed mice or high-fat diet induced obese mice with lipopolysaccharide (LPS) or vehicle via endotracheal injections. By using a multicolor flow cytometry approach to analyze and characterize differential cell subpopulations and α7nAChR expressions, we find no detectable α7nAChR in granulocytes, monocytes and alveolar macrophages, and low expression levels of α7nAChR were detected in interstitial macrophages. Interestingly, we find that a challenge with LPS treatment significantly increased expression levels of α7nAChR in monocytes, alveolar and interstitial macrophages. Meanwhile, we observed that the expression levels of α7nAChR in alveolar and interstitial macrophages in high-fat diet induced obese mice were lower than regular chow diet-fed mice challenged by the LPS. Together, our findings indicate that obesity alters the expressions of α7nAChR in differential lung myeloid cells.
Collapse
|
4
|
Cardiopulmonary Bypass Induces Acute Lung Injury via the High-Mobility Group Box 1/Toll-Like Receptor 4 Pathway. DISEASE MARKERS 2020; 2020:8854700. [PMID: 33062073 PMCID: PMC7532999 DOI: 10.1155/2020/8854700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022]
Abstract
During cardiopulmonary bypass (CPB), pulmonary ischemia/reperfusion (I/R) injury can cause acute lung injury (ALI). Our previous research confirmed that abnormal high-mobility group box 1 (HMGB1) release after CPB was closely related to ALI. However, the mechanism underlying the HMGB1-mediated induction of ALI after CPB is unclear. Our previous study found that HMGB1 binds Toll-like receptor 4 (TLR4), leading to lung injury, but direct evidence of a role for these proteins in the mechanism of CPB-induced lung injury has not been shown. We examined the effects of inhibiting HMGB1 or reducing TLR4 expression on CPB-induced lung injury in rats administered anti-HMBG1 antibody or TLR4 short-hairpin RNA (shTLR4), respectively. In these rat lungs, we studied the histologic changes and levels of interleukin- (IL-) 1β, tumour necrosis factor- (TNF-) α, HMGB1, and TLR4 after CPB. After CPB, the lung tissues from untreated rats showed histologic features of injury and significantly elevated levels of IL-1β, TNF-α, HMGB1, and TLR4. Treatment with anti-HMGB1 attenuated the CPB-induced morphological inflammatory response and protein levels of IL-1β, TNF-α, HMGB1, and TLR4 in the lung tissues and eventually alleviated the ALI after CPB. Treatment with shTLR4 attenuated the CPB-induced morphological inflammatory response and protein levels of IL-1β, TNF-α, and TLR4 in the lung tissues and eventually alleviated the ALI after CPB, but could not alleviate the HMGB1 protein levels induced by CPB. In summary, the present study demonstrated that the HMGB1/TLR4 pathway mediated the development of ALI induced by CPB.
Collapse
|
5
|
Dysfunction of inflammation-resolving pathways is associated with postoperative cognitive decline in elderly mice. Behav Brain Res 2020; 386:112538. [PMID: 32113876 DOI: 10.1016/j.bbr.2020.112538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) refers to a reversible, perioperative mental disorder. POCD increases the likelihood of postoperative complications and the risk for postoperative mortality, typically among elderly patients (age 65 or older). The importance of the cholinergic anti-inflammatory pathway (CAP) in resolving neuro-inflammatory and cognitive decline caused by sterile trauma has been recognized. We speculate that the POCD in elderly mice is associated with dysfunction of CAP. METHODS Mice were assigned to several groups (n = 5 in each group): AM (adult mice) Sham, AM (adult mice) Surgery, EM (elderly mice) Sham, EM (elderly mice) Surgery, and EMP (elderly mice with PNU) Surgery. At 24 h after surgery, assessed the cognitive levels. Pro-inflammatory cytokines in peripheral blood and splenic monocytes (TNF-α, IL-6 and IL-10) were assessed by ELISA and qPCR. Levels of M2 macrophages in hippocampus were visualized by immunofluorescence. Detecting CD11b/c+α7 nAChR+ cells in the spleens with flow cytometry. RESULTS At postoperative 24 h, elderly mice exhibited significantly increased POCD compared with adult mice. The proinflammatory factor TNF-α and IL-6 were higher among elderly surgery mice (EM) compared with adult surgery (AM) and elderly-P surgery mice (EM-P); the anti-inflammatory factor IL-10 and M2 macrophages were lower among EM surgery mice compared with AM surgery and EM-P surgery mice. The CD11b/c+α7 nAChR+ population of splenocytes was reduced in the EM surgery mice. CONCLUSIONS The exaggerated and persistent cognitive decline and inflammatory response among elderly mice were associated with dysfunction of CAP, and these phenomena were reversed by α7nAch receptor agonists.
Collapse
|
6
|
Itonaga T, Hirao S, Yamazaki K, Ikeda T, Minatoya K, Masumoto H. The N-terminal lectin-like domain of thrombomodulin reduces acute lung injury without anticoagulant effects in a rat cardiopulmonary bypass model. Gen Thorac Cardiovasc Surg 2020; 68:785-792. [PMID: 31955320 DOI: 10.1007/s11748-020-01292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Systemic inflammation evoked by cardiopulmonary bypass (CPB) leads to acute lung injury (ALI) and respiratory failure. Although recombinant human soluble thrombomodulin (rTM) consists of three domains (D1-3), is reported to attenuate systemic inflammation through the N-terminal lectin-like domain (D1), anticoagulant domain (D2) may exacerbate coagulopathy after CPB. We investigated the potential of selective D1 against CPB-mediated ALI free from anticoagulant effects using a rat CPB model. METHODS Rats were divided into three groups: control (CPB alone, n = 5), D1 (CPB + D1, n = 4), and D123 (CPB + D123, n = 6). D1 or D123 was administrated to the rats of each group before CPB establishment. Blood samples are collected before, during and after CPB. Blood coagulability was assessed by a coagulation analyzer. Lung samples are collected at 1 h after the termination of CPB for histological analyses. RESULTS D123 group exhibited significantly prolonged glass beads-activated clotting time with heparinase after CPB compared to that in control group, whereas no significant prolongation in control and D1 group (control vs. D1 vs. D123: 65.4 ± 9.2 vs. 65.3 ± 10.9 vs. 83.5 ± 4.6 s, p = 0.036 [control vs. D123], 0.99 [control vs. D1]) indicating the absence of anticoagulant activities of D1. Histological studies revealed less congestion, edema, inflammation, and hemorrhage in both D1 and D123 groups compared to those in control group indicating protective effects of both D1 and D123 against ALI mediated by CPB. CONCLUSIONS N-terminal lectin-like domain of rTM may reduce the risk of ALI without anticoagulant effects.
Collapse
Affiliation(s)
- Tatsuya Itonaga
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shingo Hirao
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Cardiovascular Surgery, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Kazuhiro Yamazaki
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tadashi Ikeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Masumoto
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
7
|
Huang D, Chen M, Wang Z, Hou L, Yu W. Electroacupuncture Pretreatment Attenuates Inflammatory Lung Injury After Cardiopulmonary Bypass by Suppressing NLRP3 Inflammasome Activation in Rats. Inflammation 2019; 42:895-903. [PMID: 30680695 DOI: 10.1007/s10753-018-0944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiopulmonary bypass (CPB) can induce inflammatory lung injury, which is a common complication during cardiac surgery. Nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome-induced inflammation plays a crucial role in lung injury after CPB. Previous studies have shown that electroacupuncture (EA) has potential anti-inflammatory activity. However, the role of EA in CPB is poorly understood. The aim of this study was to determine whether EA was associated with CPB-induced inflammatory lung injury. In the present study, rats were treated with EA for 5 days before CPB. Two hours after CPB, the lung tissue, serum, and bronchoalveolar lavage fluid (BALF) were prepared for assessment. Our results showed that the expression of NLRP3 in the lung tissue increased significantly after CPB. The EA pretreatment suppressed NLRP3 inflammasome activation, reduced lung edema, and inhibited IL-1β release into the serum and BALF after CPB. Our findings suggest that EA pretreatment attenuates inflammatory lung injury after CPB by suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Dongxiao Huang
- The Third Affiliated Hospital of Soochow University, No.185 Juqian Street, Changzhou, Jiangsu, China.,Department of Anesthesiology, Wuxi People's Hospital, No.299 Qingyang Road, Wuxi, Jiangsu, China
| | - Mo Chen
- The Third Affiliated Hospital of Soochow University, No.185 Juqian Street, Changzhou, Jiangsu, China
| | - Zhankui Wang
- Department of Orthopedics, The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Lei Hou
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pudian Road, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pudian Road, Shanghai, China. .,Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, No.225 Changhai Road, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
8
|
Electroacupuncture Pretreatment Attenuates Acute Lung Injury Through α7 Nicotinic Acetylcholine Receptor-Mediated Inhibition of HMGB1 Release in Rats After Cardiopulmonary Bypass. Shock 2019; 50:351-359. [PMID: 29117064 PMCID: PMC6072368 DOI: 10.1097/shk.0000000000001050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text Acute lung injury is a common complication after cardiopulmonary bypass (CPB). α7 Nicotinic acetylcholine receptors (α7nAChR) and α7nAChR-dependent cholinergic signaling are implicated in suppressing the release of high-mobility group box 1 (HMGB1) and reducing the inflammatory response. A previous study has shown the electroacupuncture (EA) pretreatment induces tolerance against lung injury. However, the role of EA in CPB is poorly understood. This study used EA and a rat model of CPB to determine whether EA was associated with CPB-induced lung injury. Rats were treated with EA at “Zusanli (ST36)” and “Feishu (BL13)” acupoints for 5 days before being subjected to CPB. Two hours post-CPB, samples of blood, bronchoalveolar lavage fluid (BALF), and lung tissues were processed for investigations. Our results showed that the expression of α7nAChR in lung tissue was significantly decreased after CPB. EA pretreatment prevented the reduction in the expression of α7nAChR, EA pretreatment reduced lung edema, inhibited inflammatory cytokines release in serum and lung as well as protein concentrations in BALF and HMGB1 release after CPB, and the beneficial effects were attenuated by α-BGT. Our study demonstrates that EA pretreatment plays a protective role in CPB-induced ALI, and inhibits HMGB1 release through α7nAChR activation in rats.
Collapse
|
9
|
Deng Y, Guo SL, Wei B, Gao XC, Zhou YC, Li JQ. Activation of Nicotinic Acetylcholine α7 Receptor Attenuates Progression of Monocrotaline-Induced Pulmonary Hypertension in Rats by Downregulating the NLRP3 Inflammasome. Front Pharmacol 2019; 10:128. [PMID: 30863307 PMCID: PMC6399137 DOI: 10.3389/fphar.2019.00128] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Inflammation and altered immunity contribute to the development of pulmonary arterial hypertension (PH). The alpha 7 nicotinic acetylcholine receptor (α7nAChR) possesses anti-inflammatory activities. The current study was performed to investigate the effects of a selective α7nAChR agonist, PNU-282987, on controlling a monocrotaline (MCT)-induced rat model of PH and explored the underlying mechanisms. Methods: Sprague-Dawley rats were injected with MCT and treated with PNU-282987 at the prevention (starting 1 week before MCT) and treatment (starting 2 weeks after MCT) settings. Four weeks after MCT injection, hemodynamic changes, right ventricular structure, and lung morphological features were assessed. Enzyme-linked immunosorbent assay, Western blot and qRT-PCR were performed to assess levels of inflammatory cytokines and NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome pathway in the rat lung tissues. In addition, the lung macrophage line NR8383 was used to confirm the in vivo data. Results: Monocrotaline injection produced PH in rats and downregulated α7nAChR mRNA and protein expression in rat lung tissues compared to sham controls. Pharmacological activation of α7nAChR by PNU-282987 therapy improved the rat survival rate, attenuated the development of PH as assessed by remodeling of pulmonary arterioles, reduced the right ventricular (RV) systolic pressure, and ameliorated the hypertrophy and fibrosis of the RV in rats with MCT-induced PH. The expression of TNF-α, IL-6, IL-1β, and IL-18 were downregulated in rat lung tissues, which implied that PNU-282987 therapy may help regulate inflammation. These protective effects involved the inhibition of the NLRP3 inflammasome. In vitro assays of cultured rat lung macrophages confirmed that the anti-inflammation effect of PNU-282987 therapy may contribute to the disturbance of NLRP3 inflammasome activation. Conclusion: Targeting α7nAChR with PNU-282987 could effectively prevent and treat PH with benefits for preventing ongoing inflammation in the lungs of rats with MCT-induced PH by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, The Cardiovascular Disease Institute, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Sheng-Lan Guo
- Department of Ultrasound, The Cardiovascular Disease Institute, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Bin Wei
- Department of Cardiology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Xing-Cui Gao
- Department of Cardiology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Ying-Chuan Zhou
- Department of Pathology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Jia-Quan Li
- The Experimental Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Yamada M, Ichinose M. The Cholinergic Pathways in Inflammation: A Potential Pharmacotherapeutic Target for COPD. Front Pharmacol 2018; 9:1426. [PMID: 30559673 PMCID: PMC6287026 DOI: 10.3389/fphar.2018.01426] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
In COPD, the activity of the cholinergic system is increased, which is one of the reasons for the airflow limitation caused by the contraction of airway smooth muscles. Therefore, blocking the contractive actions with anticholinergics is a useful therapeutic intervention to reduce the airflow limitation. In addition to the effects of bronchoconstriction and mucus secretion, accumulating evidence from animal models of COPD suggest acetylcholine has a role in inflammation. Experiments using muscarinic M3-receptor deficient mice or M3 selective antagonists revealed that M3-receptors on parenchymal cells, but not on hematopoietic cells, are involved in the pro-inflammatory effect of acetylcholine. Recently, combinations of long-acting β2 adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) have become available for COPD treatment. These dual long-acting bronchodilators may have synergistic anti-inflammatory effects because stimulation of β2 adrenergic receptors induces inhibitory effects in inflammatory cells via a different signaling pathway from that by antagonizing M3-receptor, though these anti-inflammatory effects have not been clearly demonstrated in COPD patients. In contrast to the pro-inflammatory effects by ACh via muscarinic receptors, it has been demonstrated that the cholinergic anti-inflammatory pathway, which involves the parasympathetic nervous systems, regulates excessive inflammatory responses to protect organs during tissue injury and infection. Stimulation of acetylcholine via the α7 nicotinic acetylcholine receptor (α7nAChR) exerts inhibitory effects on leukocytes including macrophages and type 2 innate lymphoid cells. Although it remains unclear whether the inhibitory effects of acetylcholine via α7nAChR in inflammatory cells can regulate inflammation in COPD, neuroimmune interactions including the cholinergic anti-inflammatory pathway might serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Lu Z, Xie P, Zhang D, Sun P, Yang H, Ye J, Cao H, Huo C, Zhou H, Chen Y, Ye W, Yu L, Liu J. 3-Dehydroandrographolide protects against lipopolysaccharide-induced inflammation through the cholinergic anti-inflammatory pathway. Biochem Pharmacol 2018; 158:305-317. [PMID: 30391477 DOI: 10.1016/j.bcp.2018.10.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a deadly disease without effective chemotherapy, so far. Traditional Chinese medicine andrographis herba is frequently used in the treatment of respiratory diseases. In searching for natural anti-ALI components from andrographis herba, the activities of 3-dehydroandrographolide (3-DA), a new natural andrographolide product from andrographis herba were evaluated. In this study, murine macrophage RAW 264.7 cells and BALB/c mice were treated with LPS (lipopolysaccharide, 100 ng/ml in vitro; 3 mg/kg, intratracheal) to establish inflammation models. 3-DA attenuated the release of pro-inflammatory cytokines IL-6 and TNF-α, inhibited the degradation and phosphorylation of IκBα, and suppressed the nuclear translocation of NF-κB p65 as well as the phosphorylation of Akt at Ser473 in LPS-stimulated RAW 264.7 macrophage cells. Furthermore, 3-DA increased α7nAchR expression level and bound with α7nAchR. More importantly, the anti-inflammatory effects of 3-DA were counteracted in the presence of α7nAchR siRNA or methyllycaconitine (MLA, a α7nAchR specific inhibitor), suggesting that α7nAchR is a potential target in the anti-inflammatory effects of 3-DA. Besides, 3-DA significantly inhibited inflammation in LPS-induced ALI mice, which was associated with the decrease of lung water content and inflammatory cytokines, the inhibition of neutrophil and macrophage infiltration, and activation of the NF-κB/Akt signaling pathway. Moreover, these protective effects were attenuated by the treatment of MLA. Taken together, 3-DA alleviates LPS-induced inflammation via the cholinergic anti-inflammatory pathway in vitro and in vivo. These findings provide a rationale for the role of the cholinergic anti-inflammatory pathway in inflammation and the promising clinical application of 3-DA to treat ALI.
Collapse
Affiliation(s)
- Zibin Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Pei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Pinghua Sun
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Huayi Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Jiaxi Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Huihui Cao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Chuying Huo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Hongling Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, PR China.
| | - Linzhong Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China.
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
12
|
Intachai K, C Chattipakorn S, Chattipakorn N, Shinlapawittayatorn K. Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19092466. [PMID: 30134547 PMCID: PMC6164157 DOI: 10.3390/ijms19092466] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction (AMI) is the most common cause of acute myocardial injury and its most clinically significant form. The most effective treatment for AMI is to restore an adequate coronary blood flow to the ischemic myocardium as quickly as possible. However, reperfusion of an ischemic region can induce cardiomyocyte death, a phenomenon termed “myocardial ischemia/reperfusion (I/R) injury”. Disruption of cardiac parasympathetic (vagal) activity is a common hallmark of a variety of cardiovascular diseases including AMI. Experimental studies have shown that increased vagal activity exerts cardioprotective effects against myocardial I/R injury. In addition, acetylcholine (ACh), the principle cardiac vagal neurotransmitter, has been shown to replicate the cardioprotective effects of cardiac ischemic conditioning. Moreover, studies have shown that cardiomyocytes can synthesize and secrete ACh, which gives further evidence concerning the importance of the non-neuronal cholinergic signaling cascades. This suggests that the activation of ACh receptors is involved in cardioprotection against myocardial I/R injury. There are two types of ACh receptors (AChRs), namely muscarinic and nicotinic receptors (mAChRs and nAChRs, respectively). However, the effects of AChRs activation in cardioprotection during myocardial I/R are still not fully understood. In this review, we summarize the evidence suggesting the association between AChRs activation with both electrical and pharmacological interventions and the cardioprotection during myocardial I/R, as well as outline potential mechanisms underlying these cardioprotective effects.
Collapse
Affiliation(s)
- Kannaporn Intachai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
13
|
NLRP3/ASC-mediated alveolar macrophage pyroptosis enhances HMGB1 secretion in acute lung injury induced by cardiopulmonary bypass. J Transl Med 2018; 98:1052-1064. [PMID: 29884910 DOI: 10.1038/s41374-018-0073-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 11/09/2022] Open
Abstract
Our previous study showed that high levels of HMGB1 existed in rats following cardiopulmonary bypass (CPB)-induced acute lung injury (ALI) and neutralization of high-mobility group box 1(HMGB1) reduced CPB-induced ALI. However, the mechanism by which CPB increases HMGB1 secretion is unclear. Recent studies have shown that inflammasome-mediated cell pyroptosis promotes HMGB1 secretion. This study aimed to investigate the relationship between inflammasome-mediated pyroptosis and HMGB1 in CPB-related ALI. We employed oxygen-glucose deprivation (OGD)-induced alveolar macrophage (AM) NR8383 pyroptosis to measure HMGB1 secretion. We found that OGD significantly increased the levels of caspase-1 cleaved p10, IL-1β and ASC expression, caspase-1 activity and the frequency of pyroptotic AM, and promoted the cytoplasm transportation and secretion of HMGB1, which were significantly mitigated by ASC silencing or pre-treatment with glyburide (a Nlrp3 inhibitor) in AM. CPB also increased the expression levels of Nlrp3, ASC, caspase-1 P10, and IL-1β, and the percentages of AM pyroptosis in the lungs of experimental rats accompanied by increased levels of serum and bronchoalveolar lavage fluid (BALF) HMGB1. Treatment with glyburide significantly mitigated the CPB-increased ASC, caspase-1 p10 and IL-1β expression, and the percentages of AM pyroptosis in the lungs, as well as the levels of HMGB1 in serum and BALF in rats. Therefore, our data indicated that the Nlrp3/ASC-mediated AM pyroptosis increased HMGB1 secretion in ALI induced by CPB. These findings may provide a therapeutic strategy to reduce lung injury and inflammatory responses during CPB.
Collapse
|
14
|
De Schepper S, Stakenborg N, Matteoli G, Verheijden S, Boeckxstaens GE. Muscularis macrophages: Key players in intestinal homeostasis and disease. Cell Immunol 2017; 330:142-150. [PMID: 29291892 PMCID: PMC6108422 DOI: 10.1016/j.cellimm.2017.12.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Muscularis macrophages densily colonize the outermost layer of the gastrointestinal tract. Muscularis macrophages communicate with enteric neurons in a bidirectional matter. Muscularis macrophages are tissue-protective but can contribute to disease. Current challenges are to decipher therapeutic potentials of muscularis macrophages.
Macrophages residing in the muscularis externa of the gastrointestinal tract are highly specialized cells that are essential for tissue homeostasis during steady-state conditions as well as during disease. They are characterized by their unique protective functional phenotype that is undoubtedly a consequence of the reciprocal interaction with their environment, including the enteric nervous system. This muscularis macrophage-neuron interaction dictates intestinal motility and promotes tissue-protection during injury and infection, but can also contribute to tissue damage in gastrointestinal disorders such as post-operative ileus and gastroparesis. Although the importance of muscularis macrophages is clearly recognized, different aspects of these cells remain largely unexplored such their origin, longevity and instructive signals that determine their function and phenotype. In this review, we will discuss the phenotype, functions and origin of muscularis macrophages during steady-state and disease conditions. We will highlight the bidirectional crosstalk with neurons and potential therapeutic strategies that target and manipulate muscularis macrophages to restore their protective signature as a treatment for disease.
Collapse
Affiliation(s)
- Sebastiaan De Schepper
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Intestinal Neuro-immune Interactions, University of Leuven, Leuven, Belgium.
| | - Nathalie Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Intestinal Neuro-immune Interactions, University of Leuven, Leuven, Belgium.
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Laboratory for Mucosal Immunology, University of Leuven, Leuven, Belgium.
| | - Simon Verheijden
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Intestinal Neuro-immune Interactions, University of Leuven, Leuven, Belgium.
| | - Guy E Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Intestinal Neuro-immune Interactions, University of Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Grandi A, Zini I, Flammini L, Cantoni AM, Vivo V, Ballabeni V, Barocelli E, Bertoni S. α 7 Nicotinic Agonist AR-R17779 Protects Mice against 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in a Spleen-Dependent Way. Front Pharmacol 2017; 8:809. [PMID: 29167641 PMCID: PMC5682330 DOI: 10.3389/fphar.2017.00809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022] Open
Abstract
The existence of a cholinergic anti-inflammatory pathway negatively modulating the inflammatory and immune responses in various clinical conditions and experimental models has long been postulated. In particular, the protective involvement of the vagus nerve and of nicotinic Ach receptors (nAChRs) has been proposed in intestinal inflammation and repeatedly investigated in DSS- and TNBS-induced colitis. However, the role of α7 nAChRs stimulation is still controversial and the potential contribution of α4β2 nAChRs has never been explored in this experimental condition. Our aims were therefore to pharmacologically investigate the role played by both α7 and α4β2 nAChRs in the modulation of the local and systemic inflammatory responses activated in TNBS-induced colitis in mice and to assess the involvement of the spleen in nicotinic responses. To this end, TNBS-exposed mice were sub-acutely treated with various subcutaneous doses of highly selective agonists (AR-R17779 and TC-2403) and antagonists (methyllycaconitine and dihydro-β-erythroidine) of α7 and α4β2 nAChRs, respectively, or with sulfasalazine 50 mg/kg per os and clinical and inflammatory responses were evaluated by means of biochemical, histological and flow cytometry assays. α4β2 ligands evoked weak and contradictory effects, while α7 nAChR agonist AR-R17779 emerged as the most beneficial treatment, able to attenuate several local markers of colitis severity and to revert the rise in splenic T-cells and in colonic inflammatory cytokines levels induced by haptenization. After splenectomy, AR-R17779 lost its protective effects, demonstrating for the first time that, in TNBS-model of experimental colitis, the anti-inflammatory effect of exogenous α7 nAChR stimulation is strictly spleen-dependent. Our findings showed that the selective α7 nAChRs agonist AR-R17779 exerted beneficial effects in a model of intestinal inflammation characterized by activation of the adaptive immune system and that the spleen is essential to mediate this cholinergic protection.
Collapse
Affiliation(s)
- Andrea Grandi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Irene Zini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Flammini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Anna M. Cantoni
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Valentina Vivo
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | - Simona Bertoni
- Food and Drug Department, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Chen K, Sun Y, Diao Y, Ji L, Song D, Zhang T. α7 nicotinic acetylcholine receptor agonist inhibits the damage of rat hippocampal neurons by TLR4/Myd88/NF‑κB signaling pathway during cardiopulmonary bypass. Mol Med Rep 2017; 16:4770-4776. [PMID: 28791395 PMCID: PMC5647028 DOI: 10.3892/mmr.2017.7166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/27/2017] [Indexed: 01/27/2023] Open
Abstract
The present study aimed to investigate the effect of α7 nicotinic acetylcholine receptor (α7nAChR) agonist on the damage of hippocampal neurons and the expression of toll like receptor 4 (TLR4)/myeloid differentiation primary response 88 (Myd88)/nuclear factor (NF)‑κB signal pathway‑associated factors in cardiopulmonary bypass (CPB). Sprague Dawley rats were randomly divided into five groups: Sham operation (Sham); CPB; CPB + α7nAChR agonist PHA568487 (PHA); CPB + α7nAChR inhibitor MLA (MLA); and CPB + PHA568487 + TLR4 antagonist (CPT). Blood and brain tissue samples were harvested at 12 h following the withdrawal of CPB. Levels of serum inflammatory factors [interleukin (IL)‑1β, IL‑6 and tumor necrosis factor (TNF)‑α] and brain injury markers [S‑100β and neuron‑specific enolase (NSE)] were measured using ELISA. In addition, pathological histology and apoptosis changes were observed using hematoxylin and eosin staining, and Tunnel assays. Quantitative polymerase chain reaction and western blot assays were used to determine the expression of TLR4, Myd88 and NF‑κB mRNA, and protein in the hippocampus. The morphology of hippocampal pyramidal cells in the Sham group was observed to be normal. Pyramidal cells in the CPB, MLA and CPT groups were loosely arranged, and the baselines had disappeared, with clear nucleus pyknosis and neuronal apoptosis. Furthermore, the cells in the PHA group were slightly damaged. IL‑1β, IL‑6, TNF‑α, S‑100β and NSE expression levels in the CPB, MLA, and CPT groups were significantly higher compared with that in the Sham group (P<0.05). Compared with CPB group, the expression of inflammatory cytokines in the PHA group was significantly lower (P<0.05). The expression of TLR4, Myd88 and NF‑κB mRNA, and protein in the hippocampus of CPB, MLA and CPT groups were significantly higher compared with that in the Sham group, and the PHA group expression was significantly lower compared with the CPB group (P<0.05). α7nAChRs agonist can inhibit the apoptosis of rat brain neurons induced by CPB, and may protect against brain injury through the TLR4/Myd88/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yingjie Sun
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang 110016, P.R. China
| | - Yugang Diao
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang 110016, P.R. China
| | - Liu Ji
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang 110016, P.R. China
| | - Dandan Song
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang 110016, P.R. China
| | - Tiezheng Zhang
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang 110016, P.R. China
| |
Collapse
|