1
|
Liu F, Sun X, Zhou J, Li J, Chen J, Du G, Zhao X. Efficient biosynthesis of active hemoglobins through enhancing the import of heme in Saccharomyces cerevisiae. FEBS J 2024; 291:3737-3748. [PMID: 38865576 DOI: 10.1111/febs.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/22/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Hemoglobins, with heme as a cofactor, are functional proteins that have extensive applications in the fields of artificial oxygen carriers and foods. Although Saccharomyces cerevisiae is an ideal host for hemoglobin synthesis, it lacks a suitable transport system to utilize additional heme for active expression of hemoglobins, resulting in the cellular aggregation and degradation of the latter. Here, an effective heme importer, heme-responsive gene 4 (Hrg-4), was selected from six candidates through the comparison of effects on the growth rates of Δhem1 S. cerevisiae strain and the activities of various hemoglobins when supplemented with 5 mg·L-1 exogenous heme. Additionally, to counter the instability of plasmid-based expression and the metabolic burden introduced from overexpressing Hrg-4, a series of hrg-4 integrated strains were constructed and the best engineered strain with five copies of hrg-4 was chosen. We found that this engineered strain was associated with an increased binding rate of heme in monomeric leghemoglobin and multimeric human hemoglobin (76.3% and 16.5%, respectively), as well as an enhanced expression of both hemoglobins (52.8% and 17.0%, respectively). Thus, the engineered strain with improved heme uptake can be used to efficiently synthesize other heme-binding proteins and enzymes in S. cerevisiae.
Collapse
Affiliation(s)
- Fan Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyan Sun
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Zhou W, Li S, Hao S, Xie X, Zhang H, Liu J, Wang H, Yang C. Preparation and exchange transfusion effect of a double polymerization human umbilical cord haemoglobin of red blood cell substitute. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:286-296. [PMID: 37224191 DOI: 10.1080/21691401.2023.2201599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 04/04/2023] [Indexed: 05/26/2023]
Abstract
The development of haemoglobin-based oxygen carrier (HBOC) is an excellent supplement to pre-hospital emergency blood transfusions. In this study, a new type of HBOC was prepared by using human cord haemoglobin (HCHb) and glutaraldehyde (GDA) and Bis(3,5-dibromosalicyl) fumarate (DBBF) to modify (DBBF-GDA-HCHb), the changes of physicochemical indexes during its preparation were evaluated, while a traditional type of GDA-HCHb was prepared, and the oxygen-carrying capacity of two type of HBOC was evaluated by a rat model of 135.0% exchange transfusion (ET). Eighteen SD male rats were selected, and were randomly divided into control group (5.0% albumin), DBBF-GDA-HCHb group and GDA-HCHb group. The 12 h survival rate of the C group was 16.67%, and the two HBOC groups were both 83.33%. Compared with GDA-HCHb, DBBF-GDA-HCHb can reduce lactic acid content by supplying oxygen to hypoxic tissues in a more timely manner, and can also can improve the reduction of MAP due to ischaemia.
Collapse
Affiliation(s)
- Wentao Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Shen Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Shasha Hao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Xintong Xie
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Honghui Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Hong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Chengmin Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, PR China
| |
Collapse
|
3
|
Macdonald R, Mahoney BJ, Soule J, Goring AK, Ford J, Loo JA, Cascio D, Clubb RT. The Shr receptor from Streptococcus pyogenes uses a cap and release mechanism to acquire heme-iron from human hemoglobin. Proc Natl Acad Sci U S A 2023; 120:e2211939120. [PMID: 36693107 PMCID: PMC9945957 DOI: 10.1073/pnas.2211939120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus) is a clinically important microbial pathogen that requires iron in order to proliferate. During infections, S. pyogenes uses the surface displayed Shr receptor to capture human hemoglobin (Hb) and acquires its iron-laden heme molecules. Through a poorly understood mechanism, Shr engages Hb via two structurally unique N-terminal Hb-interacting domains (HID1 and HID2) which facilitate heme transfer to proximal NEAr Transporter (NEAT) domains. Based on the results of X-ray crystallography, small angle X-ray scattering, NMR spectroscopy, native mass spectrometry, and heme transfer experiments, we propose that Shr utilizes a "cap and release" mechanism to gather heme from Hb. In the mechanism, Shr uses the HID1 and HID2 modules to preferentially recognize only heme-loaded forms of Hb by contacting the edges of its protoporphyrin rings. Heme transfer is enabled by significant receptor dynamics within the Shr-Hb complex which function to transiently uncap HID1 from the heme bound to Hb's β subunit, enabling the gated release of its relatively weakly bound heme molecule and subsequent capture by Shr's NEAT domains. These dynamics may maximize the efficiency of heme scavenging by S. pyogenes, enabling it to preferentially recognize and remove heme from only heme-loaded forms of Hb that contain iron.
Collapse
Affiliation(s)
- Ramsay Macdonald
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
4
|
Fischer ES, Jones LH. Small molecule modulation of protein polymerization. Chem Soc Rev 2022; 51:2392-2396. [PMID: 35266488 DOI: 10.1039/d2cs00070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation of protein surface physicochemistry through single point mutations can trigger polymerization, which is facilitated by subunit repetition within a homomeric complex. Furthermore, monogenic disorders may result from aberrant supramolecular assemblies caused by missense mutations that modify the protein surface. Noteworthy from a therapeutic perspective, small molecules have been shown to not only mediate and enhance polymerization, analogous to a surface residue perturbation, but also bind and stabilize the repeating unit to inhibit the self-assembly event. We exemplify pharmacological manipulation of polymeric protein assemblies using some recently reported studies. The aim of this Viewpoint is to highlight opportunities to rationally control protein polymerization for therapeutic benefit.
Collapse
Affiliation(s)
- Eric S Fischer
- Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Lyn H Jones
- Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, USA
| |
Collapse
|
5
|
Faggiano S, Ronda L, Bruno S, Abbruzzetti S, Viappiani C, Bettati S, Mozzarelli A. From hemoglobin allostery to hemoglobin-based oxygen carriers. Mol Aspects Med 2021; 84:101050. [PMID: 34776270 DOI: 10.1016/j.mam.2021.101050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
Hemoglobin (Hb) plays its vital role through structural and functional properties evolutionarily optimized to work within red blood cells, i.e., the tetrameric assembly, well-defined oxygen affinity, positive cooperativity, and heterotropic allosteric regulation by protons, chloride and 2,3-diphosphoglycerate. Outside red blood cells, the Hb tetramer dissociates into dimers, which exhibit high oxygen affinity and neither cooperativity nor allosteric regulation. They are prone to extravasate, thus scavenging endothelial NO and causing hypertension, and cause nephrotoxicity. In addition, they are more prone to autoxidation, generating radicals. The need to overcome the adverse effects associated with cell-free Hb has always been a major hurdle in the development of substitutes of allogeneic blood transfusions for all clinical situations where blood is unavailable or cannot be used due to, for example, religious objections. This class of therapeutics, indicated as hemoglobin-based oxygen carriers (HBOCs), is formed by genetically and/or chemically modified Hbs. Many efforts were devoted to the exploitation of the wealth of biochemical and biophysical information available on Hb structure, function, and dynamics to design safe HBOCs, overcoming the negative effects of free plasma Hb. Unfortunately, so far, no HBOC has been approved by FDA and EMA, except for compassionate use. However, the unmet clinical needs that triggered intensive investigations more than fifty years ago are still awaiting an answer. Recently, HBOCs "repositioning" has led to their successful application in organ perfusion fluids.
Collapse
Affiliation(s)
- Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Luca Ronda
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| |
Collapse
|
6
|
Wilson MT, Reeder BJ. The peroxidatic activities of Myoglobin and Hemoglobin, their pathological consequences and possible medical interventions. Mol Aspects Med 2021; 84:101045. [PMID: 34654576 PMCID: PMC8837633 DOI: 10.1016/j.mam.2021.101045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022]
Abstract
Under those pathological conditions in which Myoglobin and Hemoglobin escape their cellular environments and are thus separated from cellular reductive/protective systems, the inherent peroxidase activities of these proteins can be expressed. This activity leads to the formation of the highly oxidizing oxo-ferryl species. Evidence that this happens in vivo is provided by the formation of a covalent bond between the heme group and the protein and this acts as an unambiguous biomarker for the presence of the oxo ferryl form. The peroxidatic activity also leads to the oxidation of lipids, the products of which can be powerful vasoconstrictive agents (e.g. isoprostanes, neuroprostanes). Here we review the evidence that lipid oxidation occurs following rhabdomyolysis and sub-arachnoid hemorrhage and that the products formed from arachidonic acid chains of phospholipids lead, through vasoconstriction, to kidney failure and brain vasospasm. Intervention in these pathological conditions through administration of reducing agents to remove ferryl heme is discussed. Through-protein electron transfer pathways that facilitate ferryl reduction at low reductant concentration have been identified. We conclude with consideration of the therapeutic use of Hemoglobin Based Oxygen carriers and how the toxicity of these may be reduced by engineering such electron transfer pathways into hemoglobin.
Collapse
Affiliation(s)
- Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| | - Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| |
Collapse
|
7
|
Kettisen K, Bülow L. Introducing Negatively Charged Residues on the Surface of Fetal Hemoglobin Improves Yields in Escherichia coli. Front Bioeng Biotechnol 2021; 9:721794. [PMID: 34552916 PMCID: PMC8450383 DOI: 10.3389/fbioe.2021.721794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 11/14/2022] Open
Abstract
Fetal hemoglobin (HbF) has been developed into an important alternative protein for oxygen therapeutics. Such applications require extensive amounts of proteins, which only can be achieved via recombinant means. However, the expression of vertebrate hemoglobins in heterologous hosts is far from trivial. There are several issues that need to be dealt with. These include, among others, the solubility of the globin chains, equimolar expression of the globin chains, and access to high levels of free heme. In this study, we examined the impact of introducing negative charges on the surface of HbF. Three different HbF mutants were examined, carrying four additional negative charges on the α-subunit (rHbFα4), two additional negative charges on the γ-subunit (rHbFγ2) or a combination of these (rHbFα4/γ2). The increase in negative surface charge in these HbF mutants required the development of an alternate initial capture step in the downstream purification procedures. For the rHbFα4 mutant, we achieved a significantly enhanced yield of purified HbF with no apparent adverse effects on Hb functionality. However, the presence of non-functional Hb portions in the rHbFγ2 and rHbFα4/γ2 samples reduced the yields significantly for those mutants and indicated an imbalanced expression/association of globin chains. Furthermore, the autoxidation studies indicated that the rHbFγ2 and rHbFα4/γ2 mutants also were less oxidatively stable than rHbFα4 and wt rHbF. The study further verified the need for an improved flask culture protocol by optimizing cultivation parameters to enable yield-improving qualities of surface-located mutations.
Collapse
Affiliation(s)
- Karin Kettisen
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Olson JS. Kinetic mechanisms for O 2 binding to myoglobins and hemoglobins. Mol Aspects Med 2021; 84:101024. [PMID: 34544605 DOI: 10.1016/j.mam.2021.101024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
Antonini and Brunori's 1971 book "Hemoglobin and Myoglobin in Their Reactions with Ligands" was a truly remarkable publication that summarized almost 100 years of research on O2 binding to these globins. Over the ensuing 50 years, ultra-fast laser photolysis techniques, high-resolution and time resolved X-ray crystallography, molecular dynamics simulations, and libraries of recombinant myoglobin (Mb) and hemoglobin (Hb) variants have provided structural interpretations of O2 binding to these proteins. The resultant mechanisms provide quantitative descriptions of the stereochemical factors that govern overall affinity, including proximal and distal steric restrictions that affect iron reactivity and favorable positive electrostatic interactions that preferentially stabilize bound O2. The pathway for O2 uptake and release by Mb and subunits of Hb has been mapped by screening libraries of site-directed mutants in laser photolysis experiments. O2 enters mammalian Mb and the α and β subunits of human HbA through a channel created by upward and outward rotation of the distal His at the E7 helical position, is non-covalently captured in the interior of the distal cavity, and then internally forms a bond with the heme Fe(II) atom. O2 dissociation is governed by disruption of hydrogen bonding interactions with His (E7), breakage of the Fe(II)-O2 bond, and then competition between rebinding and escape through the E7-gate. The structural features that govern the rates of both the individual steps and overall reactions have been determined and provide the framework for: (1) defining the physiological functions of specific globins and their evolution; (2) understanding the clinical features of hemoglobinopathies; and (3) designing safer and more efficient acellular hemoglobin-based oxygen carriers (HBOCs) for transfusion therapy, organ preservation, and other commercially relevant O2 transport and storage processes.
Collapse
Affiliation(s)
- John S Olson
- Department of Biosciences, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
9
|
Goswami D, Domingo‐Lopez DA, Ward NA, Millman JR, Duffy GP, Dolan EB, Roche ET. Design Considerations for Macroencapsulation Devices for Stem Cell Derived Islets for the Treatment of Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100820. [PMID: 34155834 PMCID: PMC8373111 DOI: 10.1002/advs.202100820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Indexed: 05/08/2023]
Abstract
Stem cell derived insulin producing cells or islets have shown promise in reversing Type 1 Diabetes (T1D), yet successful transplantation currently necessitates long-term modulation with immunosuppressant drugs. An alternative approach to avoiding this immune response is to utilize an islet macroencapsulation device, where islets are incorporated into a selectively permeable membrane that can protect the transplanted cells from acute host response, whilst enabling delivery of insulin. These macroencapsulation systems have to meet a number of stringent and challenging design criteria in order to achieve the ultimate goal of reversing T1D. In this progress report, the design considerations and functional requirements of macroencapsulation systems are reviewed, specifically for stem-cell derived islets (SC-islets), highlighting distinct design parameters. Additionally, a perspective on the future for macroencapsulation systems is given, and how incorporating continuous sensing and closed-loop feedback can be transformative in advancing toward an autonomous biohybrid artificial pancreas.
Collapse
Affiliation(s)
- Debkalpa Goswami
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Daniel A. Domingo‐Lopez
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Niamh A. Ward
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Jeffrey R. Millman
- Division of Endocrinology, Metabolism & Lipid ResearchWashington University School of MedicineSt. LouisMO63110USA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMO63110USA
| | - Garry P. Duffy
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College DublinDublinD02 PN40Ireland
- CÚRAM, Centre for Research in Medical DevicesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Eimear B. Dolan
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
10
|
Sakai H, Kobayashi N, Kure T, Okuda C. Translational research of hemoglobin vesicles as a transfusion alternative. Curr Med Chem 2021; 29:591-606. [PMID: 33845721 DOI: 10.2174/0929867328666210412130035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
Clinical situations arise in which blood for transfusion becomes scarce or unavailable. Considerable demand for a transfusion alternative persists because of various difficulties posed by blood donation and transfusion systems. Hemoglobin-vesicles (HbV) are artificial oxygen carriers being developed for use as a transfusion alternative. Just as biomembranes of red blood cells (RBCs) do, phospholipid vesicles (liposomes) for Hb encapsulation can protect the human body from toxic effects of molecular Hb. The main HbV component, Hb, is obtained from discarded human donated blood. Therefore, HbV can be categorized as a biologic agent targeting oxygen for peripheral tissues. The purification procedure strictly eliminates the possibility of viral contamination. It also removes all concomitant unstable enzymes present in RBC for utmost safety from infection. The deoxygenated HbVs, which are storable for over years at ambient temperature, can function as an alternative to blood transfusion for resuscitation from hemorrhagic shock and O2 therapeutics. Moreover, a recent study clarified beneficial effects for anti-oxidation and anti-inflammation by carbon monoxide (CO)-bound HbVs. Autoxidation of HbV (HbO2 → metHb + O2-.) is unavoidable after intravenous administration. Co-injection of methylene blue can extract the intraerythrocytic glycolytic electron energy effectively and reduce metHb. Other phenothiazine dyes can also function as electron mediators to improve the functional life span of HbV. This review paper summarizes recent progress of the research and development of HbV, aimed at clinical applications.
Collapse
Affiliation(s)
- Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Naoko Kobayashi
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Chie Okuda
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| |
Collapse
|
11
|
Lambert E, Janjic JM. Quality by design approach identifies critical parameters driving oxygen delivery performance in vitro for perfluorocarbon based artificial oxygen carriers. Sci Rep 2021; 11:5569. [PMID: 33692373 PMCID: PMC7946885 DOI: 10.1038/s41598-021-84076-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 01/15/2023] Open
Abstract
Perfluorocarbons (PFCs) exhibiting high solubility for oxygen are attractive materials as artificial oxygen carriers (AOC), an alternative to whole blood or Haemoglobin-based oxygen carriers (HBOCs). PFC-based AOCs, however, met clinical translation roadblocks due to product quality control challenges. To overcome these issues, we present an adaptation of Quality by Design (QbD) practices to optimization of PFC nanoemulsions (PFC-NEs) as AOCs. QbD elements including quality risk management, design of experiments (DoE), and multivariate data analysis facilitated the identification of composition and process parameters that strongly impacted PFC colloidal stability and oxygen transport function. Resulting quantitative relationships indicated a composition-driven tradeoff between stability and oxygen transport. It was found that PFC content was most predictive of in vitro oxygen release, but the PFC type (perfluoro-15-crown-5-ether, PCE or perfluorooctyl bromide, PFOB) had no effect on oxygen release. Furthermore, we found, under constant processing conditions, all PFC-NEs, comprised of varied PFC and hydrocarbon content, exhibited narrow droplet size range (100–150 nm) and narrow size distribution. Representative PFOB-NE maintained colloidal attributes upon manufacturing on larger scale (100 mL). QbD approach offers unique insights into PFC AOC performance, which will overcome current product development challenges and accelerate clinical translation.
Collapse
Affiliation(s)
- Eric Lambert
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
12
|
Samuel PP, Case DA. Atomistic Simulations of Heme Dissociation Pathways in Human Methemoglobins Reveal Hidden Intermediates. Biochemistry 2020; 59:4093-4107. [PMID: 32945658 DOI: 10.1021/acs.biochem.0c00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heme dissociations disrupt function and structural integrity of human hemoglobin and trigger various cardiovascular complications. These events become significant in methemoglobins that have undergone autoxidation of ferrous into ferric heme. We have structurally characterized the heme disassociation pathways for adult tetrameric methemoglobins using all-atom molecular dynamics simulations. These reveal that bis-histidine hemichromes, characterized here by the coordination of heme iron to both the F8 (proximal) and E7 (distal) histidines, are seen as intermediates following dissociation of the water molecule distally bound to each heme iron. Later, the breaking of coordination between heme iron and proximal histidine disrupts the F helix and pushes it away from the heme cavity, enabling both bulk solvent penetration and disruption of tetramer interface interactions. The interactions inhibiting heme dissociation were then seen to be (i) either a direct or a water-molecule-mediated interaction between distal histidine and heme iron and (ii) stacking between heme and the αCE1/βCD1 phenylalanine residue. These interactions are less important in the β than in α subunits due to a more flexible β subunit CE loop region. The absence of a distal histidine interaction in the H(E7)L mutant and increased heme cavity volume in the V(E11)A mutant both promoted heme escape from the protein interior. Adult and fetal hemoglobins were seen to share a general heme disassociation pathway and intermediates due to the conservation of key heme pocket residues. The intermediates seen here are analyzed in light of experimental studies of heme dissociation and pathways of certain hemoglobinopathies.
Collapse
Affiliation(s)
- Premila P Samuel
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - David A Case
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
13
|
|
14
|
The Interplay between Molten Globules and Heme Disassociation Defines Human Hemoglobin Disassembly. Biophys J 2020; 118:1381-1400. [PMID: 32075750 DOI: 10.1016/j.bpj.2020.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hemoglobin functions as a tetrameric oxygen transport protein, with each subunit containing a heme cofactor. Its denaturation, either in vivo or in vitro, involves autoxidation to methemoglobin, followed by cofactor loss and globin unfolding. We have proposed a global disassembly scheme for human methemoglobin, linking hemin (ferric protoporphyrin IX) disassociation and apoprotein unfolding pathways. The model is based on the evaluation of circular dichroism and visible absorbance measurements of guanidine-hydrochloride-induced disassembly of methemoglobin and previous measurements of apohemoglobin unfolding. The populations of holointermediates and equilibrium disassembly parameters were estimated quantitatively for adult and fetal hemoglobins. The key stages are characterized by hexacoordinated hemichrome intermediates, which are important for preventing hemin disassociation from partially unfolded, molten globular species during early disassembly and late-stage assembly events. Both unfolding experiments and independent small angle x-ray scattering measurements demonstrate that heme disassociation leads to the loss of tetrameric structural integrity. Our model predicts that after autoxidation, dimeric and monomeric hemichrome intermediates occur along the disassembly pathway inside red cells, where the hemoglobin concentration is very high. This prediction suggests why misassembled hemoglobins often get trapped as hemichromes that accumulate into insoluble Heinz bodies in the red cells of patients with unstable hemoglobinopathies. These Heinz bodies become deposited on the cell membranes and can lead to hemolysis. Alternatively, when acellular hemoglobin is diluted into blood plasma after red cell lysis, the disassembly pathway appears to be dominated by early hemin disassociation events, which leads to the generation of higher fractions of unfolded apo subunits and free hemin, which are known to damage the integrity of blood vessel walls. Thus, our model provides explanations of the pathophysiology of hemoglobinopathies and other disease states associated with unstable globins and red cell lysis and also insights into the factors governing hemoglobin assembly during erythropoiesis.
Collapse
|
15
|
Zhang N, Wei MY, Ma Q. Nanomedicines: A Potential Treatment for Blood Disorder Diseases. Front Bioeng Biotechnol 2019; 7:369. [PMID: 31850329 PMCID: PMC6892756 DOI: 10.3389/fbioe.2019.00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Blood disorder diseases (BDDs), also known as hematologic, is one of the diseases owing to hematopoietic system disorder. Chemotherapy, bone marrow transplantation, and stem cells therapy have been used to treat BDDs. However, the cure rates are still low due to the availability of the right type of bone marrow and the likelihood of recurrence and infection. With the rapid development of nanotechnology in the field of biomedicine, artificial blood or blood substitute has shown promising features for the emergency treatment of BDDs. Herein, we surveyed recent advances in the development of artificial blood components: gas carrier components (erythrocyte substitutes), immune response components (white blood cell substitutes), and hemostasis-responsive components (platelet substitutes). Platelet-inspired nanomedicines for cancer treatment were also discussed. The challenges and prospects of these treatment options in future nanomedicine development are discussed.
Collapse
Affiliation(s)
- Nan Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Ming-Yuan Wei
- Texas Commission on Environmental Quality, Austin, TX, United States
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
16
|
Hemoglobin-based Oxygen Carriers (HBOC)—What the Next Generation Holds: When Red Blood Cells are not an Option. Shock 2019; 52:4-6. [DOI: 10.1097/shk.0000000000001421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Ferenz KB, Steinbicker AU. Artificial Oxygen Carriers-Past, Present, and Future-a Review of the Most Innovative and Clinically Relevant Concepts. J Pharmacol Exp Ther 2019; 369:300-310. [PMID: 30837280 DOI: 10.1124/jpet.118.254664] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
Blood transfusions are a daily practice in hospitals. Since these products are limited in availability and have various, harmful side effects, researchers have pursued the goal to develop artificial blood components for about 40 years. Development of oxygen therapeutics and stem cells are more recent goals. Medline (https://www.ncbi.nlm.nih.gov/pubmed/?holding=ideudelib), ClinicalTrials.gov (https://clinicaltrials.gov), EU Clinical Trials Register (https://www.clinicaltrialsregister.eu), and Australian New Zealand Clinical Trials Registry (http://www.anzctr.org.au) were searched up to July 2018 using search terms related to artificial blood products in order to identify new and ongoing research over the last 5 years. However, for products that are already well known and important to or relevant in gaining a better understanding of this field of research, the reader is punctually referred to some important articles published over 5 years ago. This review includes not only clinically relevant substances such as heme-oxygenating carriers, perfluorocarbon-based oxygen carriers, stem cells, and organ conservation, but also includes interesting preclinically advanced compounds depicting the pipeline of potential new products. In- depth insights into specific benefits and limitations of each substance, including the biochemical and physiologic background are included. "Fancy" ideas such as iron-based substances, O2 microbubbles, cyclodextranes, or lugworms are also elucidated. To conclude, this systematic up-to-date review includes all actual achievements and ongoing clinical trials in the field of artificial blood products to pursue the dream of artificial oxygen carrier supply. Research is on the right track, but the task is demanding and challenging.
Collapse
Affiliation(s)
- Katja B Ferenz
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.B.F.); and Department of Anesthesiology, Intensive Care and Pain Medicine, Westphalian Wilhelminian University Muenster, University Hospital Muenster, Muenster, Germany (A.U.S.)
| | - Andrea U Steinbicker
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.B.F.); and Department of Anesthesiology, Intensive Care and Pain Medicine, Westphalian Wilhelminian University Muenster, University Hospital Muenster, Muenster, Germany (A.U.S.)
| |
Collapse
|