1
|
Deng Y, Leng L, Wang C, Yang Q, Hu Y. Analyzing the molecular mechanism of Scutellaria Radix in the treatment of sepsis using RNA sequencing. BMC Infect Dis 2024; 24:695. [PMID: 38997656 PMCID: PMC11241924 DOI: 10.1186/s12879-024-09589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction, which seriously threatens human health. The clinical and experimental results have confirmed that Traditional Chinese medicine (TCM), such as Scutellariae Radix, has anti-inflammatory effects. This provides a new idea for the treatment of sepsis. This study systematically analyzed the mechanism of Scutellariae Radix treatment in sepsis based on network pharmacology, RNA sequencing and molecular docking. METHODS Gene expression analysis was performed using Bulk RNA sequencing on sepsis patients and healthy volunteers. After quality control of the results, the differentially expressed genes (DEGs) were analyzed. The active ingredients and targets of Scutellariae Radix were identified using The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Gene Ontology (GO) and Protein-Protein Interaction (PPI) analysis were performed for disease-drug intersection targets. With the help of GEO database, Survival analysis and Meta-analysis was performed on the cross-targets to evaluate the prognostic value and screen the core targets. Subsequently, single-cell RNA sequencing was used to determine where the core targets are located within the cell. Finally, in this study, molecular docking experiments were performed to further clarify the interrelationship between the active components of Scutellariae Radix and the corresponding targets. RESULTS There were 72 active ingredients of Scutellariae Radix, and 50 common targets of drug and disease. GO and PPI analysis showed that the intersection targets were mainly involved in response to chemical stress, response to oxygen levels, response to drug, regulation of immune system process. Survival analysis showed that PRKCD, EGLN1 and CFLAR were positively correlated with sepsis prognosis. Meta-analysis found that the three genes were highly expressed in sepsis survivor, while lowly in non-survivor. PRKCD was mostly found in Macrophages, while EGLN1 and CFLAR were widely expressed in immune cells. The active ingredient Apigenin regulates CFLAR expression, Baicalein regulates EGLN1 expression, and Wogonin regulates PRKCD expression. Molecular docking studies confrmed that the three active components of astragalus have good binding activities with their corresponding targets. CONCLUSIONS Apigenin, Baicalein and Wogonin, important active components of Scutellaria Radix, produce anti-sepsis effects by regulating the expression of their targets CFLAR, EGLN1 and PRKCD.
Collapse
Affiliation(s)
- Yaxing Deng
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Linghan Leng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Qingqiang Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China.
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Zhang Y, Chen K, Wang M, Wang Z, Wang D, Niu J, Yang E, Li Y, Sun Y, Zhao P, Liu W, Lv Y, Hu X. Activated PRKCD-mediated neutrophil extracellular traps pathway may be the prothrombotic mechanism of neutrophils in polycythemia vera patients based on clinical retrospective analysis and bioinformatics study. Int Immunopharmacol 2024; 127:111366. [PMID: 38128308 DOI: 10.1016/j.intimp.2023.111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Thrombosis is a major cause of morbimortality in patients with polycythemia vera (PV). Furthermore, neutrophils play a significant role in thrombosis, but their role in the pathogenetic mechanisms of PV is not well characterized. Therefore, we investigated the role and mechanisms by which neutrophils regulate thrombosis in PV patients. Univariate and multivariate logistic regression analysis of clinicopathological factors was performed to determine the independent risk factors of thrombosis in PV. Pearson's correlation analysis was performed to determine the relationship between absolute neutrophil count (ANC) and the hypercoagulable state in PV patients. Bioinformatics analysis of the GSE54644 dataset was used to identify hemostasis-related pathways in neutrophils of PV patients. Weighted gene co-expression network analysis (WGCNA) of the integrated dataset (GSE57793, GSE26049 and GSE61629) was used to identify neutrophils-related genes and pathways associated with thrombosis in PV. Ingenuity pathway analysis (IPA) was performed to identify the differentially activated pathways in PV patients with or without thrombosis using GSE47018 dataset. Our data showed increased ANC in PV patients. Multivariate logistic regression analysis showed that ANC was an independent risk factor for the thrombotic events in PV patients before or at diagnosis. ANC correlated with the hypercoagulable state in PV patients. Neutrophil extracellular traps (NETs) pathway was significantly enriched in the neutrophils of PV patients. IPA results demonstrated that PRKCD-mediated NETs pathway was hyperactivated in PV patients with thrombosis. In summary, ANC was an independent risk factor for the thrombotic events in PV patients before or at diagnosis, and PRKCD-mediated NETs pathway was aberrantly activated in the neutrophils of PV patients and was associated with the thrombotic events.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Chen
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingjing Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziqing Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Dehao Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jicong Niu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Erpeng Yang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Pei Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Lv
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Chaib M, Holt JR, Fisher EL, Sipe LM, Bohm MS, Joseph SC, Simmons BW, Eugin Simon S, Yarbro JR, Tanveer U, Halle JL, Carson JA, Hollingsworth T, Wei Q, Rathmell JC, Thomas PG, Hayes DN, Makowski L. Protein kinase C delta regulates mononuclear phagocytes and hinders response to immunotherapy in cancer. SCIENCE ADVANCES 2023; 9:eadd3231. [PMID: 38134280 PMCID: PMC10745701 DOI: 10.1126/sciadv.add3231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Mononuclear phagocytes (MPs) play a crucial role in tissue homeostasis; however, MPs also contribute to tumor progression and resistance to immune checkpoint blockade (ICB). Targeting MPs could be an effective strategy to enhance ICB efficacy. We report that protein kinase C delta (PKCδ), a serine/threonine kinase, is abundantly expressed by MPs in human and mouse tumors. PKCδ-/- mice displayed reduced tumor progression compared to wild types, with increased response to anti-PD-1. Tumors from PKCδ-/- mice demonstrated TH1-skewed immune response including increased antigen presentation and T cell activation. Depletion of MPs in vivo altered tumor growth in control but not PKCδ-/- mice. Coinjection of PKCδ-/- M2-like macrophages with cancer cells into wild-type mice markedly delayed tumor growth and significantly increased intratumoral T cell activation compared to PKCδ+/+ controls. PKCδ deficiency reprogrammed MPs by activating type I and type II interferon signaling. Thus, PKCδ might be targeted to reprogram MPs to augment ICB efficacy.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jeremiah R. Holt
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Emilie L. Fisher
- Vanderbilt Center for Immunobiology and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Laura M. Sipe
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Margaret S. Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sydney C. Joseph
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Boston W. Simmons
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Samson Eugin Simon
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnathan R. Yarbro
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ubaid Tanveer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jessica L. Halle
- Department of Physical Therapy, College of Health Professions, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James A. Carson
- Department of Physical Therapy, College of Health Professions, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - T.J. Hollingsworth
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - QingQing Wei
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Paul G. Thomas
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - D. Neil Hayes
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal 2023; 21:330. [PMID: 37974282 PMCID: PMC10652453 DOI: 10.1186/s12964-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Sigdel I, Ofori-Kwafo A, Heizelman RJ, Nestor-Kalinoski A, Prabhakarpandian B, Tiwari AK, Tang Y. Biomimetic on-chip assay reveals the anti-metastatic potential of a novel thienopyrimidine compound in triple-negative breast cancer cell lines. Front Bioeng Biotechnol 2023; 11:1227119. [PMID: 37840664 PMCID: PMC10569307 DOI: 10.3389/fbioe.2023.1227119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: This study presents a microfluidic tumor microenvironment (TME) model for evaluating the anti-metastatic efficacy of a novel thienopyrimidines analog with anti-cancer properties utilizing an existing commercial platform. The microfluidic device consists of a tissue compartment flanked by vascular channels, allowing for the co-culture of multiple cell types and providing a wide range of culturing conditions in one device. Methods: Human metastatic, drug-resistant triple-negative breast cancer (TNBC) cells (SUM159PTX) and primary human umbilical vein endothelial cells (HUVEC) were used to model the TME. A dynamic perfusion scheme was employed to facilitate EC physiological function and lumen formation. Results: The measured permeability of the EC barrier was comparable to observed microvessels permeability in vivo. The TNBC cells formed a 3D tumor, and co-culture with HUVEC negatively impacted EC barrier integrity. The microfluidic TME was then used to model the intravenous route of drug delivery. Paclitaxel (PTX) and a novel non-apoptotic agent TPH104c were introduced via the vascular channels and successfully reached the TNBC tumor, resulting in both time and concentration-dependent tumor growth inhibition. PTX treatment significantly reduced EC barrier integrity, highlighting the adverse effects of PTX on vascular ECs. TPH104c preserved EC barrier integrity and prevented TNBC intravasation. Discussion: In conclusion, this study demonstrates the potential of microfluidics for studying complex biological processes in a controlled environment and evaluating the efficacy and toxicity of chemotherapeutic agents in more physiologically relevant conditions. This model can be a valuable tool for screening potential anticancer drugs and developing personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Indira Sigdel
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Awurama Ofori-Kwafo
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Robert J. Heizelman
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Andrea Nestor-Kalinoski
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | | | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Yuan Tang
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| |
Collapse
|
7
|
Chen YT, Li J, Chang JN, Luo YC, Yu W, Chen LC, Yang JM. Transcriptomic analysis of World Trade Center particulate Matter-induced pulmonary inflammation and drug treatments. ENVIRONMENT INTERNATIONAL 2023; 177:108027. [PMID: 37321070 DOI: 10.1016/j.envint.2023.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Over 400,000 people are estimated to have been exposed to World Trade Center particulate matter (WTCPM) since the attack on the Twin Towers in Lower Manhattan on September 11, 2001. Epidemiological studies have found that exposure to dust may cause respiratory ailments and cardiovascular diseases. However, limited studies have performed a systematic analysis of transcriptomic data to elucidate the biological responses to WTCPM exposure and the therapeutic options. Here, we developed an in vivo mouse exposure model of WTCPM and administered two drugs (i.e., rosoxacin and dexamethasone) to generate transcriptomic data from lung samples. WTCPM exposure increased the inflammation index, and this index was significantly reduced by both drugs. We analyzed the transcriptomics derived omics data using a hierarchical systems biology model (HiSBiM) with four levels, including system, subsystem, pathway, and gene analyses. Based on the selected differentially expressed genes (DEGs) from each group, WTCPM and the two drugs commonly affected the inflammatory responses, consistent with the inflammation index. Among these DEGs, the expression of 31 genes was affected by WTCPM exposure and consistently reversed by the two drugs, and these genes included Psme2, Cldn18, and Prkcd, which are involved in immune- and endocrine-related subsystems and pathways such as thyroid hormone synthesis, antigen processing and presentation, and leukocyte transendothelial migration. Furthermore, the two drugs reduced the inflammatory effects of WTCPM through distinct pathways, e.g., vascular-associated signaling by rosoxacin, whereas mTOR-dependent inflammatory signaling was found to be regulated by dexamethasone. To the best of our knowledge, this study constitutes the first investigation of transcriptomics data of WTCPM and an exploration of potential therapies. We believe that these findings provide strategies for the development of promising optional interventions and therapies for airborne particle exposure.
Collapse
Affiliation(s)
- Yun-Ti Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA 94304, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Jen-Ning Chang
- Degree Program of Applied Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| | - Yong-Chun Luo
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| | - Wuyue Yu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C; Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C.
| |
Collapse
|
8
|
Li S, Huang Q, Zhou D, He B. PRKCD as a potential therapeutic target for chronic obstructive pulmonary disease. Int Immunopharmacol 2022; 113:109374. [PMID: 36279664 DOI: 10.1016/j.intimp.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
9
|
Tang H, He Y, Liang Z, Li J, Dong Z, Liao Y. The therapeutic effect of adipose-derived stem cells on soft tissue injury after radiotherapy and their value for breast reconstruction. Stem Cell Res Ther 2022; 13:493. [PMID: 36195925 PMCID: PMC9531407 DOI: 10.1186/s13287-022-02952-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Postmastectomy radiotherapy is considered to be a necessary treatment in the therapy of breast cancer, while it will cause soft tissue damage and complications, which are closely related to the success rate and effectiveness of breast reconstruction. After radiotherapy, cutaneous tissue becomes thin and brittle, and its compliance decreases. Component fat grafting and adipose-derived stem cell therapy are considered to have great potential in treating radiation damage and improving skin compliance after radiotherapy. Main body In this paper, the basic types and pathological mechanisms of skin and soft tissue damage to breast skin caused by radiation therapy are described. The 2015–2021 studies related to stem cell therapy in PubMed were also reviewed. Studies suggest that adipose-derived stem cells exert their biological effects mainly through cargoes carried in extracellular vesicles and soluble secreted factors. Compared to traditional fat graft breast reconstruction, ADSC therapy amplifies the effects of stem cells in it. In order to obtain a more purposeful therapeutic effect, proper stem cell pretreatment may achieve more ideal and safe results. Conclusion Recent research works about ADSCs and other MSCs mainly focus on curative effects in the acute phase of radiation injury, and there is little research about treatment of chronic phase complications. The efficacy of stem cell therapy on alleviating skin fibrosis and its underlying mechanism require further research.
Collapse
Affiliation(s)
- Haojing Tang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yufei He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Zhuokai Liang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jian Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
10
|
Damascena HL, Silveira WAA, Castro MS, Fontes W. Neutrophil Activated by the Famous and Potent PMA (Phorbol Myristate Acetate). Cells 2022; 11:2889. [PMID: 36139464 PMCID: PMC9496763 DOI: 10.3390/cells11182889] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
This review will briefly outline the major signaling pathways in PMA-activated neutrophils. PMA is widely used to understand neutrophil pathways and formation of NETs. PMA activates PKC; however, we highlight some isoforms that contribute to specific functions. PKC α, β and δ contribute to ROS production while PKC βII and PKC ζ are involved in cytoskeleton remodeling. Actin polymerization is important for the chemotaxis of neutrophils and its remodeling is connected to ROS balance. We suggest that, although ROS and production of NETs are usually observed together in PMA-activated neutrophils, there might be a regulatory mechanism balancing both. Interestingly, we suggest that serine proteases might determine the PAD4 action. PAD4 could be responsible for the activation of the NF-κB pathway that leads to IL-1β release, triggering the cleavage of gasdermin D by serine proteases such as elastase, leading to pore formation contributing to release of NETs. On the other hand, when serine proteases are inhibited, NETs are formed by citrullination through the PAD4 pathway. This review puts together results from the last 31 years of research on the effects of PMA on the neutrophil and proposes new insights on their interpretation.
Collapse
Affiliation(s)
| | | | | | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Federal District, Brasilia 70910-900, Brazil
| |
Collapse
|
11
|
Chen G, Wang X, Liu C, Zhang M, Han X, Xu Y. The interaction of MD-2 with small molecules in huanglian jiedu decoction play a critical role in the treatment of sepsis. Front Pharmacol 2022; 13:947095. [PMID: 36160407 PMCID: PMC9500189 DOI: 10.3389/fphar.2022.947095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
Huanglian Jiedu Decoction (HJD) is used for treating sepsis in China. Active components from HJD refer to various active ingredients of HJD, while active component formulation (ACF) refers to the combination of palmatine, berberine, baicalin, and geniposide from HJD according to the quantity of HJD. The detailed mechanisms of the active components from HJD and ACF in sepsis treatment are unclear. Molecular docking, surface plasmon resonance (SPR), ELISA, RT-qPCR, and Western blotting were used to assay the possible mechanism in vitro. The efficacy and mechanism of ACF and HJD were assessed by pharmacodynamics and metabolomics analyses, respectively. The results revealed that palmatine, berberine, baicalin, and geniposide showed good binding capacity to MD-2; decreased the release of NO, TNF-α, IL-6, and IL-1β; inhibited the mRNA expression of iNOS, TNF-α, IL-6, IL-1β, and COX-2; and downregulated the protein expressions of MD-2, MyD88, p-p65, and iNOS induced by LPS; which indicated that they can inactivate the LPS-TLR4/MD-2-NF-κB pathway. Thus, ACF was formed, and the pharmacodynamics assay suggested that ACF can reduce inflammatory cell infiltration and organ damage in accordance with HJD. Furthermore, 39 metabolites were selected and identified and the regulatory effect of these metabolites by ACF and HJD was almost consistent, but ACF might alleviate physical damage caused by HJD through regulating metabolites, such as 3-hydroxyanthranilic acid. ACF could represent HJD as a new formulation to treat sepsis.
Collapse
Affiliation(s)
- Guirong Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
- Institute of Pharmacy, 967th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China
| | - Xiaobo Wang
- Institute of Pharmacy, 967th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China
| | - Chang Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mingbo Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xueying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- *Correspondence: Xueying Han, ; Yubin Xu,
| | - Yubin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
- *Correspondence: Xueying Han, ; Yubin Xu,
| |
Collapse
|
12
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
13
|
Wu D, Pan J, Zhang D. Inhibition of PKC-δ reduce rhabdomyolysis-induced acute kidney injury. J Cell Mol Med 2022; 26:3243-3253. [PMID: 35502493 PMCID: PMC9170808 DOI: 10.1111/jcmm.17331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research, the mechanisms underlying rhabdomyolysis-induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis-induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC-δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC-δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC-δ-mediated myoglobin-induced cell apoptosis and the expression of TNF-α and IL1-β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC-δ in renal cell apoptosis and suggests that PKC-δ is a viable therapeutic target for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Dengke Wu
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Changsha, China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Changsha, China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Changsha, China
| |
Collapse
|
14
|
Limami Y, Senhaji N, Zaid N, Khalki L, Naya A, Hajjaj-Hassouni N, Jalali F, Oudghiri M, Zaid Y. PKC-Delta-Dependent Pathways Contribute to the Exacerbation of the Platelet Activity in Crohn's Disease. Semin Thromb Hemost 2021; 48:246-250. [PMID: 34749401 DOI: 10.1055/s-0041-1736571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Youness Limami
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca.,Department of Medicine, Research Center of Abulcasis University of Health Sciences, Rabat, Morocco
| | - Nezha Senhaji
- Faculty of Medicine, Laboratory of Genetic and Molecular Pathology, Hassan II University, Casablanca, Morocco
| | - Nabil Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Loubna Khalki
- Faculty of Medicine, Research Center, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Abdallah Naya
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca
| | | | - Farid Jalali
- Department of Gastroenterology, Saddleback Medical Group, Laguna Hills, California
| | - Mounia Oudghiri
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca
| | - Younes Zaid
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca.,Department of Medicine, Research Center of Abulcasis University of Health Sciences, Rabat, Morocco.,Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
15
|
Neehus AL, Moriya K, Nieto-Patlán A, Le Voyer T, Lévy R, Özen A, Karakoc-Aydiner E, Baris S, Yildiran A, Altundag E, Roynard M, Haake K, Migaud M, Dorgham K, Gorochov G, Abel L, Lachmann N, Dogu F, Haskologlu S, İnce E, El-Benna J, Uzel G, Kiykim A, Boztug K, Roderick MR, Shahrooei M, Brogan PA, Abolhassani H, Hancioglu G, Parvaneh N, Belot A, Ikinciogullari A, Casanova JL, Puel A, Bustamante J. Impaired respiratory burst contributes to infections in PKCδ-deficient patients. J Exp Med 2021; 218:e20210501. [PMID: 34264265 PMCID: PMC8288504 DOI: 10.1084/jem.20210501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Patients with autosomal recessive protein kinase C δ (PKCδ) deficiency suffer from childhood-onset autoimmunity, including systemic lupus erythematosus. They also suffer from recurrent infections that overlap with those seen in patients with chronic granulomatous disease (CGD), a disease caused by defects of the phagocyte NADPH oxidase and a lack of reactive oxygen species (ROS) production. We studied an international cohort of 17 PKCδ-deficient patients and found that their EBV-B cells and monocyte-derived phagocytes produced only small amounts of ROS and did not phosphorylate p40phox normally after PMA or opsonized Staphylococcus aureus stimulation. Moreover, the patients' circulating phagocytes displayed abnormally low levels of ROS production and markedly reduced neutrophil extracellular trap formation, altogether suggesting a role for PKCδ in activation of the NADPH oxidase complex. Our findings thus show that patients with PKCδ deficiency have impaired NADPH oxidase activity in various myeloid subsets, which may contribute to their CGD-like infectious phenotype.
Collapse
Affiliation(s)
- Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Research and Development in Bioprocess Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation for Pharma Chemicals and Biotechnological Products, LANSEIDI-FarBiotec-CONACyT, Mexico City, Mexico
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Ahmet Özen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Alisan Yildiran
- Department of Pediatric Immunology and Allergy, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Engin Altundag
- Department of Medical Genetics, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Karim Dorgham
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale, Center for Immunology and Microbial Infections, CIMI-Paris, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Immunology, Paris, France
| | - Guy Gorochov
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale, Center for Immunology and Microbial Infections, CIMI-Paris, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Immunology, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Erdal İnce
- Department of Pediatric Infectious Disease, Ankara University School of Medicine, Ankara, Turkey
| | - Jamel El-Benna
- University of Paris, Institut National de la Santé et de la Recherche Médical U1149, Centre National de la Recherche Scientifique-ERL8252, Paris, France
- Center for Research on Inflammation, Laboratory of Excellence Inflamex, Faculty of Medicine, Xavier Bichat, Paris, France
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Marmara University Pediatric Training and Research Hospital, Istanbul, Turkey
- Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Marion R. Roderick
- Pediatric Immunology and Infectious Disease, Bristol Royal Hospital for Children, Bristol, UK
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul A. Brogan
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, University College London Institute of Child Health, London, UK
| | - Hassan Abolhassani
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Gonca Hancioglu
- Department of Pediatric Immunology and Allergy, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Nima Parvaneh
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandre Belot
- Reference Center for Rare Rheumatic and Autoimmune Diseases in Children, Pediatric Rheumatology, Hospices Civils de Lyon, Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, UMS3444/US8 Lyon University, Lyon, France
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| |
Collapse
|
16
|
Emerging Approaches to Understanding Microvascular Endothelial Heterogeneity: A Roadmap for Developing Anti-Inflammatory Therapeutics. Int J Mol Sci 2021; 22:ijms22157770. [PMID: 34360536 PMCID: PMC8346165 DOI: 10.3390/ijms22157770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
The endothelium is the inner layer of all blood vessels and it regulates hemostasis. It also plays an active role in the regulation of the systemic inflammatory response. Systemic inflammatory disease often results in alterations in vascular endothelium barrier function, increased permeability, excessive leukocyte trafficking, and reactive oxygen species production, leading to organ damage. Therapeutics targeting endothelium inflammation are urgently needed, but strong concerns regarding the level of phenotypic heterogeneity of microvascular endothelial cells between different organs and species have been expressed. Microvascular endothelial cell heterogeneity in different organs and organ-specific variations in endothelial cell structure and function are regulated by intrinsic signals that are differentially expressed across organs and species; a result of this is that neutrophil recruitment to discrete organs may be regulated differently. In this review, we will discuss the morphological and functional variations in differently originated microvascular endothelia and discuss how these variances affect systemic function in response to inflammation. We will review emerging in vivo and in vitro models and techniques, including microphysiological devices, proteomics, and RNA sequencing used to study the cellular and molecular heterogeneity of endothelia from different organs. A better understanding of microvascular endothelial cell heterogeneity will provide a roadmap for developing novel therapeutics to target the endothelium.
Collapse
|
17
|
Experimental Approaches to Evaluate Leukocyte-Endothelial Cell Interactions in Sepsis and Inflammation. Shock 2021; 53:585-595. [PMID: 32080065 DOI: 10.1097/shk.0000000000001407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sepsis is a life-threatening syndrome of organ dysfunction caused by a dysregulated host response to infection characterized by excessive neutrophil infiltration into vital organs. In sepsis, patients often die of organ failure and therapies directed against endothelial cell dysfunction and tissue damage are important targets for treatment of this disease. Novel approaches are required to understand the underlying pathophysiology of neutrophil dysregulation and neutrophil-endothelial cell interactions that play a critical role in the early course of organ damage and disruption of endothelial protective barrier. Here, we review methodologies that our laboratories have employed to study neutrophil-endothelial interaction and endothelial barrier function in in vivo and in vitro models of sepsis. We will focus on in vivo rodent models of sepsis and in vitro tools that use human cell culture models under static conditions and the more physiologically relevant biomimetic microfluidic assays. This Methods paper is based on our presentation in the Master Class Symposium at the 41st Annual Conference on Shock 2018.
Collapse
|
18
|
Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother Oncol 2021; 158:21-32. [PMID: 33581220 DOI: 10.1016/j.radonc.2021.02.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
Radiation-induced endothelial/vascular injury is a major complicating factor in radiotherapy and a leading cause of morbidity and mortality in nuclear or radiological catastrophes. Exposure of tissue to ionizing radiation (IR) leads to the release of oxygen radicals and proteases that result in loss of endothelial barrier function and leukocyte dysfunction leading to tissue injury and organ damage. Microvascular endothelial cells are particularly sensitive to IR and radiation-induced alterations in endothelial cell function are thought to be a critical factor in organ damage through endothelial cell activation, enhanced leukocyte-endothelial cell interactions, increased barrier permeability and initiation of apoptotic pathways. These radiation-induced inflammatory responses are important in early and late radiation pathologies in various organs. A better understanding of mechanisms of radiation-induced endothelium dysfunction is therefore vital, as radiobiological response of endothelium is of major importance for medical management and therapeutic development for radiation injuries. In this review, we summarize the current knowledge of cellular and molecular mechanisms of radiation-induced endothelium damage and their impact on early and late radiation injury. Furthermore, we review established and emerging in vivo and in vitro models that have been developed to study the mechanisms of radiation-induced endothelium damage and to design, develop and rapidly screen therapeutics for treatment of radiation-induced vascular damage. Currently there are no specific therapeutics available to protect against radiation-induced loss of endothelial barrier function, leukocyte dysfunction and resulting organ damage. Developing therapeutics to prevent endothelium dysfunction and normal tissue damage during radiotherapy can serve as the urgently needed medical countermeasures.
Collapse
|
19
|
Pang C, Wen L, Lu X, Luo S, Qin H, Zhang X, Zhu B, Luo S. Ruboxistaurin maintains the bone mass of subchondral bone for blunting osteoarthritis progression by inhibition of osteoclastogenesis and bone resorption activity. Biomed Pharmacother 2020; 131:110650. [PMID: 32882584 DOI: 10.1016/j.biopha.2020.110650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease with a series of changes occurring in aging cartilage, such as increased oxidative stress, decreased markers of healthy cartilage and alterations in the autophagy pathway. And increasing evidence indicates that osteoarthritis affects the whole joint, including both cartilage and subchondral bone. The agents that can effectively suppress chondrocyte degradation and subchondral bone deterioration are crucial for the prevention and treatment of OA. Ruboxistaurin (RU), an orally active protein kinase C inhibitor, can reduce macrophage adhesion to endothelial cells and relieve the local inflammation when applicating in diabetes and kinds of aging-related vasculopathy, which were realized by its effects on decreasing inflammatory cytokines' expression and increasing cell anti-oxidative stress ability. However, whether ruboxistaurin protects against OA remains unknown. In this study, we investigated the therapeutic effects of ruboxistaurin in an anterior cruciate ligament transection (ACLT)-induced OA model by preventing the bone mass loss of subchondral bone. We found that ruboxistaurin can effectively alleviate ACLT-induced osteoarthritis, as demonstrated by the phenomenon of correcting pathological bone loss caused by osteoclasts overactivated in the early stage of osteoarthritis and protecting against articular cartilage degeneration. Moreover, we found that ruboxistaurin inhibited osteoclast formation and resorption activity by suppressing the expressions of osteoclast-related genes and (PKCδ/MAPKs) signaling cascade. Taken together, these results show that ruboxistaurin may be a potential therapeutic agent for rescuing abnormal subchondral bone deterioration and cartilage degradation in OA and reverses the vicious cycle related to osteoarthritis.
Collapse
Affiliation(s)
- Cong Pang
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China; Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Liangbao Wen
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuanyuan Lu
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Shanchao Luo
- Guangxi Postdoctoral Innovation Practice Base, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Haikuo Qin
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Xuehui Zhang
- Department of Nuclear Medicine, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Bikang Zhu
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Shixing Luo
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China.
| |
Collapse
|
20
|
What's New in Shock, May 2019? Shock 2020; 51:535-537. [PMID: 30985603 DOI: 10.1097/shk.0000000000001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Liverani E, Tursi SA, Cornwell WD, Mondrinos MJ, Sun S, Buttaro BA, Wolfson MR, Rogers TJ, Tükel Ç, Kilpatrick LE. Protein kinase C-delta inhibition is organ-protective, enhances pathogen clearance, and improves survival in sepsis. FASEB J 2019; 34:2497-2510. [PMID: 31908004 DOI: 10.1096/fj.201900897r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 11/11/2022]
Abstract
Sepsis is a leading cause of morbidity and mortality in intensive care units. Previously, we identified Protein Kinase C-delta (PKCδ) as an important regulator of the inflammatory response in sepsis. An important issue in development of anti-inflammatory therapeutics is the risk of immunosuppression and inability to effectively clear pathogens. In this study, we investigated whether PKCδ inhibition prevented organ dysfunction and improved survival without compromising pathogen clearance. Sprague Dawley rats underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. Post-surgery, PBS or a PKCδ inhibitor (200µg/kg) was administered intra-tracheally (IT). At 24 hours post-CLP, there was evidence of lung and kidney dysfunction. PKCδ inhibition decreased leukocyte influx in these organs, decreased endothelial permeability, improved gas exchange, and reduced blood urea nitrogen/creatinine ratios indicating organ protection. PKCδ inhibition significantly decreased bacterial levels in the peritoneal cavity, spleen and blood but did not exhibit direct bactericidal properties. Peritoneal chemokine levels, neutrophil numbers, or macrophage phenotypes were not altered by PKCδ inhibition. Peritoneal macrophages isolated from PKCδ inhibitor-treated septic rats demonstrated increased bacterial phagocytosis. Importantly, PKCδ inhibition increased survival. Thus, PKCδ inhibition improved survival and improved survival was associated with increased phagocytic activity, enhanced pathogen clearance, and decreased organ injury.
Collapse
Affiliation(s)
- Elisabetta Liverani
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Sarah A Tursi
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - William D Cornwell
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Mark J Mondrinos
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Shuang Sun
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Bettina A Buttaro
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Marla R Wolfson
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Thomas J Rogers
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Laurie E Kilpatrick
- Center for Inflammation, Clinical and Translational Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
22
|
Sparks R, Lui A, Bader D, Patel R, Murr M, Guida W, Fratti R, Patel NA. A specific small-molecule inhibitor of protein kinase CδI activity improves metabolic dysfunction in human adipocytes from obese individuals. J Biol Chem 2019; 294:14896-14910. [PMID: 31413114 DOI: 10.1074/jbc.ra119.008777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
The metabolic consequences and sequelae of obesity promote life-threatening morbidities. PKCδI is an important elicitor of inflammation and apoptosis in adipocytes. Here we report increased PKCδI activation via release of its catalytic domain concurrent with increased expression of proinflammatory cytokines in adipocytes from obese individuals. Using a screening strategy of dual recognition of PKCδI isozymes and a caspase-3 binding site on the PKCδI hinge domain with Schrödinger software and molecular dynamics simulations, we identified NP627, an organic small-molecule inhibitor of PKCδI. Characterization of NP627 by surface plasmon resonance (SPR) revealed that PKCδI and NP627 interact with each other with high affinity and specificity, SPR kinetics revealed that NP627 disrupts caspase-3 binding to PKCδI, and in vitro kinase assays demonstrated that NP627 specifically inhibits PKCδI activity. The SPR results also indicated that NP627 affects macromolecular interactions between protein surfaces. Of note, release of the PKCδI catalytic fragment was sufficient to induce apoptosis and inflammation in adipocytes. NP627 treatment of adipocytes from obese individuals significantly inhibited PKCδI catalytic fragment release, decreased inflammation and apoptosis, and significantly improved mitochondrial metabolism. These results indicate that PKCδI is a robust candidate for targeted interventions to manage obesity-associated chronic inflammatory diseases. We propose that NP627 may also be used in other biological systems to better understand the impact of caspase-3-mediated activation of kinase activity.
Collapse
Affiliation(s)
- Robert Sparks
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Ashley Lui
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Deena Bader
- James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Rekha Patel
- Department of Chemistry, University of South Florida, Tampa, Florida 33612
| | - Michel Murr
- Surgery Department, University of Central Florida, Orlando, Florida 32816.,Bariatric and Metabolic Institute, AdventHealth, Tampa, Florida 33612
| | - Wayne Guida
- Department of Chemistry, University of South Florida, Tampa, Florida 33612
| | - Rutilio Fratti
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Niketa A Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 .,James A. Haley Veterans Hospital, Tampa, Florida 33612
| |
Collapse
|
23
|
STAT2 dependent Type I Interferon response promotes dysbiosis and luminal expansion of the enteric pathogen Salmonella Typhimurium. PLoS Pathog 2019; 15:e1007745. [PMID: 31009517 PMCID: PMC6513112 DOI: 10.1371/journal.ppat.1007745] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/13/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms by which the gut luminal environment is disturbed by the immune system to foster pathogenic bacterial growth and survival remain incompletely understood. Here, we show that STAT2 dependent type I IFN signaling contributes to the inflammatory environment by disrupting hypoxia enabling the pathogenic S. Typhimurium to outgrow the microbiota. Stat2-/- mice infected with S. Typhimurium exhibited impaired type I IFN induced transcriptional responses in cecal tissue and reduced bacterial burden in the intestinal lumen compared to infected wild-type mice. Although inflammatory pathology was similar between wild-type and Stat2-/- mice, we observed decreased hypoxia in the gut tissue of Stat2-/- mice. Neutrophil numbers were similar in wild-type and Stat2-/- mice, yet Stat2-/- mice showed reduced levels of myeloperoxidase activity. In vitro, the neutrophils from Stat2-/- mice produced lower levels of superoxide anion upon stimulation with the bacterial ligand N-formylmethionyl-leucyl-phenylalanine (fMLP) in the presence of IFNα compared to neutrophils from wild-type mice, indicating that the neutrophils were less functional in Stat2-/- mice. Cytochrome bd-II oxidase-mediated respiration enhances S. Typhimurium fitness in wild-type mice, while in Stat2-/- deficiency, this respiratory pathway did not provide a fitness advantage. Furthermore, luminal expansion of S. Typhimurium in wild-type mice was blunted in Stat2-/- mice. Compared to wild-type mice which exhibited a significant perturbation in Bacteroidetes abundance, Stat2-/- mice exhibited significantly less perturbation and higher levels of Bacteroidetes upon S. Typhimurium infection. Our results highlight STAT2 dependent type I IFN mediated inflammation in the gut as a novel mechanism promoting luminal expansion of S. Typhimurium. The spread of invading microbes is frequently contained by an inflammatory response. Yet, some pathogenic microbes have evolved to utilize inflammation for niche generation and to support their metabolism. Here, we demonstrate that S. Typhimurium exploits type I IFN signaling, a prototypical anti-viral response, to foster its own growth in the inflamed gut. In the absence of STAT2-dependent type I IFN, production of neutrophil reactive oxygen species was impaired, and epithelial metabolism returned to homeostatic hypoxia. Consequently, S. Typhimurium was unable to respire in the absence of type I IFN, and failed to expand in the gut lumen. Furthermore, perturbation of the gut microbiota was dependent on type I IFN signaling. Taken together, our work suggests that S. Typhimurium utilizes STAT2-dependent type I IFN signaling to generate a niche in the inflamed intestinal tract and outcompete the gut microbiota.
Collapse
|
24
|
The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. Int J Mol Sci 2019; 20:ijms20061498. [PMID: 30917487 PMCID: PMC6471617 DOI: 10.3390/ijms20061498] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.
Collapse
|
25
|
Tang Y, Soroush F, Sun S, Liverani E, Langston JC, Yang Q, Kilpatrick LE, Kiani MF. Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage. J Neuroinflammation 2018; 15:309. [PMID: 30400800 PMCID: PMC6220469 DOI: 10.1186/s12974-018-1342-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Neuroinflammation often develops in sepsis leading to activation of cerebral endothelium, increased permeability of the blood-brain barrier (BBB), and neutrophil infiltration. We have identified protein kinase C-delta (PKCδ) as a critical regulator of the inflammatory response and demonstrated that pharmacologic inhibition of PKCδ by a peptide inhibitor (PKCδ-i) protected endothelial cells, decreased sepsis-mediated neutrophil influx into the lung, and prevented tissue damage. The objective of this study was to elucidate the regulation and relative contribution of PKCδ in the control of individual steps in neuroinflammation during sepsis. Methods The role of PKCδ in mediating human brain microvascular endothelial (HBMVEC) permeability, junctional protein expression, and leukocyte adhesion and migration was investigated in vitro using our novel BBB on-a-chip (B3C) microfluidic assay and in vivo in a rat model of sepsis induced by cecal ligation and puncture (CLP). HBMVEC were cultured under flow in the vascular channels of B3C. Confocal imaging and staining were used to confirm tight junction and lumen formation. Confluent HBMVEC were pretreated with TNF-α (10 U/ml) for 4 h in the absence or presence of PKCδ-i (5 μM) to quantify neutrophil adhesion and migration in the B3C. Permeability was measured using a 40-kDa fluorescent dextran in vitro and Evans blue dye in vivo. Results During sepsis, PKCδ is activated in the rat brain resulting in membrane translocation, a step that is attenuated by treatment with PKCδ-i. Similarly, TNF-α-mediated activation of PKCδ and its translocation in HBMVEC are attenuated by PKCδ-i in vitro. PKCδ inhibition significantly reduced TNF-α-mediated hyperpermeability and TEER decrease in vitro in activated HBMVEC and rat brain in vivo 24 h after CLP induced sepsis. TNF-α-treated HBMVEC showed interrupted tight junction expression, whereas continuous expression of tight junction protein was observed in non-treated or PKCδ-i-treated cells. PKCδ inhibition also reduced TNF-α-mediated neutrophil adhesion and migration across HBMVEC in B3C. Interestingly, while PKCδ inhibition decreased the number of adherent neutrophils to baseline (no-treatment group), it significantly reduced the number of migrated neutrophils below the baseline, suggesting a critical role of PKCδ in regulating neutrophil transmigration. Conclusions The BBB on-a-chip (B3C) in vitro assay is suitable for the study of BBB function as well as screening of novel therapeutics in real-time. PKCδ activation is a key signaling event that alters the structural and functional integrity of BBB leading to vascular damage and inflammation-induced tissue damage. PKCδ-TAT peptide inhibitor has therapeutic potential for the prevention or reduction of cerebrovascular injury in sepsis-induced vascular damage.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Fariborz Soroush
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Shuang Sun
- Center for Inflammation, Clinical and Translational Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jordan C Langston
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Qingliang Yang
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Laurie E Kilpatrick
- Center for Inflammation, Clinical and Translational Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Mohammad F Kiani
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA. .,Department of Radiation Oncology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|