1
|
Bhatti UF, Dawood ZS, Shang Z, Jin G, Liggett MR, Chtraklin K, Liu B, Redondo RL, Wang B, Alam HB. Testing Neuroprotective Strategies in Prolonged Field Care Model of Traumatic Brain Injury and Hemorrhagic Shock. J Am Coll Surg 2025; 240:60-72. [PMID: 39431609 DOI: 10.1097/xcs.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
BACKGROUND Prolonged field care is a military adaptation of tactical combat casualty care providing extended prehospital management during delayed extrication. Effects of addition of valproic acid (VPA) to fresh-frozen plasma (FFP) in a prolonged field care model of hemorrhagic shock and traumatic brain injury are not known. We hypothesized that VPA is associated with decreased neurological impairment, and its protective changes are detected at the transcriptomic level. STUDY DESIGN Swine underwent traumatic brain injury and 40% blood volume hemorrhage. After 2 hours of shock, they were randomized to (1) normal saline (NS), (2) NS + 250 mL FFP (NS + FFP), or (3) NS + FFP + 150 mg/kg VPA (NS + FFP + VPA). At 72 hours, they were transfused packed RBCs before being euthanized. Intraoperative variables and neurological outcomes were compared. Brain lesion size was measured, and gene expression profiles were analyzed using RNA sequencing. Pathway and network analyses were performed on differentially expressed genes. Real-time polymerase chain reaction was performed to validate key genes. RESULTS NS + FFP and NS + FFP + VPA required significantly less crystalloid resuscitation (974 mL: NS + FFP; 1,461 mL: NS + FFP + VPA vs 4,540 mL: NS, p < 0.001), had smaller brain lesion size (2,477 mm 3 : NS + FFP; 3,018.0 mm 3 : NS + FFP + VPA vs 4,517.0 mm 3 : NS, p < 0.01), and required less functional neurologic impairment compared with NS. Per pathway analysis of differentially expressed genes, VPA was associated with enrichment of numerous metabolic changes in injured brains, which were not observed with FFP. Network analysis showed enrichment of various gene networks. Mitochondrially encoded ATP synthase membrane subunit 8 gene was downregulated in VPA-treated animals. CONCLUSIONS The addition of FFP to the resuscitation protocol resulted in a significant reduction in crystalloid requirements. Both the NS + FFP and NS + FFP + VPA groups showed improved neurological recovery compared with NS alone and had distinctive transcriptomic profiles in injured brains at 72 hours. The mitochondrially encoded ATP synthase membrane subunit 8 gene, involved in worsening ischemia following brain injury, was downregulated in VPA-treated animals.
Collapse
Affiliation(s)
- Umar F Bhatti
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA (Bhatti)
| | - Zaiba Shafik Dawood
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Zhenhua Shang
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Guang Jin
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Marjorie R Liggett
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Kiril Chtraklin
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Baoling Liu
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Ramon-Lorenzo Redondo
- Division of Infectious Diseases, Department of Medicine (Redondo), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Bowen Wang
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Hasan B Alam
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
2
|
Liggett MR, Lashley S, Gill NP, Scholtens DM, Dawood ZS, Alam HB. Plasma therapy for traumatic brain injury: Rationale for a prospective randomized trial. Transfusion 2024; 64:1362-1371. [PMID: 38940059 DOI: 10.1111/trf.17928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 02/16/2024] [Indexed: 06/29/2024]
Affiliation(s)
- Marjorie R Liggett
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sharnia Lashley
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nathan P Gill
- Department of Preventative Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Denise M Scholtens
- Department of Preventative Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zaiba Shafik Dawood
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hasan B Alam
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Li H, Yin Z, Yue S, An Y, Wang X, Zhou S, Meng L, Jin B. Effect of valproic acid combined with transplantation of olfactory ensheathing cells modified by neurotrophic 3 gene on nerve protection and repair after traumatic brain injury. Neuropeptides 2024; 103:102389. [PMID: 37945445 DOI: 10.1016/j.npep.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) often leads to cognitive and neurological dysfunction. Valproic acid (VPA) has a neuroprotective effect in acute central nervous system diseases; the neurotrophin 3 gene (NT-3) can maintain the survival of neurons, and olfactory ensheathing cells (OECs) can promote the growth of nerve axons. This study aimed to evaluate the restorative effect of VPA combined with NT-3 modified OECs (NT-3-OECs) on neurological function after TBI. METHODS The neurological severity score (NSS) of rats was evaluated on the 1st, 7th, 14th, and 28th day after TBI modeling and corresponding intervention. Hematoxylin-eosin (HE) staining, p75 nerve growth factor receptor (P75), glial fibrillary acidic protein (GFAP), and neurofilament protein (NF)staining, and argyrophilic staining were used to observe the morphology of brain tissue 28 days after modeling. Moreover, TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptosis rate of neurons. The changes in synapses and mitochondria in the injured area were observed by electron microscope. RESULTS NT-3-OECs transplantation can increase the content of NT-3 in brain tissue, and NT-3-OECs can survive for >28 days. The NSS score of the TBI-VPA-NT-3-OECs group 28 days after cell transplantation was significantly lower than that of the other model treatment groups (P < 0.05). The morphological structure of the brain tissue was more complete, and the neurofilament fibers were neatly arranged, achieving better results than those of the other groups. The apoptosis rate of nerve cells in the TBI-VPA-NT-3-OECs group was significantly lower than in the other treatment groups (P < 0.05). Furthermore, the number of synapses in the combined intervention group was significantly higher than in the other treatment groups, and the mitochondrial structure was more complete. CONCLUSION NT-3-OECs have good biological function, and VPA combined with NT-3-OECs transplantation can effectively improve the prognosis of TBI rats.
Collapse
Affiliation(s)
- Haiming Li
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Zhijie Yin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Shuangzhu Yue
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Yunying An
- Department of Clinical Laboratory, Xinxiang Central Hospital, Xinxiang 453000, Henan, China
| | - Xiaoyin Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Shifang Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Lei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Baozhe Jin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| |
Collapse
|
4
|
Jin G, Ho JW, Keeney-Bonthrone TP, Pai MP, Wen B, Ober RA, Dimonte D, Chtraklin K, Joaquin TA, Latif Z, Vercruysse C, Alam HB. Prolonging the therapeutic window for valproic acid treatment in a swine model of traumatic brain injury and hemorrhagic shock. J Trauma Acute Care Surg 2023; 95:657-663. [PMID: 37314445 DOI: 10.1097/ta.0000000000004022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND It has previously been shown that administration of valproic acid (VPA) can improve outcomes if given within an hour following traumatic brain injury (TBI). This short therapeutic window (TW) limits its use in real-life situations. Based upon its pharmacokinetic data, we hypothesized that TW can be extended to 3 hours if a second dose of VPA is given 8 hours after the initial dose. METHOD Yorkshire swine (40-45 kg; n = 10) were subjected to TBI (controlled cortical impact) and 40% blood volume hemorrhage. After 2 hours of shock, they were randomized to either (1) normal saline resuscitation (control) or (2) normal saline-VPA (150 mg/kg × two doses). First dose of VPA was started 3 hours after the TBI, with a second dose 8 hours after the first dose. Neurologic severity scores (range, 0-36) were assessed daily for 14 days, and brain lesion size was measured via magnetic resonance imaging on postinjury day 3. RESULTS Hemodynamic and laboratory parameters of shock were similar in both groups. Valproic acid-treated animals had significantly less neurologic impairment on days 2 (16.3 ± 2.0 vs. 7.3 ± 2.8) and 3 (10.9 ± 3.6 vs. 2.8 ± 1.1) postinjury and returned to baseline levels 54% faster. Magnetic resonance imaging showed no differences in brain lesion size on day 3. Pharmacokinetic data confirmed neuroprotective levels of VPA in the circulation. CONCLUSION This is the first study to demonstrate that VPA can be neuroprotective even when given 3 hours after TBI. This expanded TW has significant implications for the design of the clinical trial.
Collapse
Affiliation(s)
- Guang Jin
- From the Department of Surgery (G.J., J.W.H., T.P.K.-B., K.C., T.A.J., Z.L., C.V., H.B.A.), Feinberg School of Medicine, Northwestern University, Chicago; Department of Clinical Pharmacy (M.P.P., B.W.), University of Michigan, Ann Arbor, Michigan; Center for Comparative Medicine (R.A.O.), Northwestern University, Chicago; and Electrical and Computer Engineering (D.D.), Robert R. McCormick School, Northwestern University, Evanston, Illinois
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang Z, Chen G. Immune regulation in neurovascular units after traumatic brain injury. Neurobiol Dis 2023; 179:106060. [PMID: 36871640 DOI: 10.1016/j.nbd.2023.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Survivors may experience movement disorders, memory loss, and cognitive deficits. However, there is a lack of understanding of the pathophysiology of TBI-mediated neuroinflammation and neurodegeneration. The immune regulation process of TBI involves changes in the peripheral and central nervous system (CNS) immunity, and intracranial blood vessels are essential communication centers. The neurovascular unit (NVU) is responsible for coupling blood flow with brain activity, and comprises endothelial cells, pericytes, astrocyte end-feet, and vast regulatory nerve terminals. A stable NVU is the basis for normal brain function. The concept of the NVU emphasizes that cell-cell interactions between different types of cells are essential for maintaining brain homeostasis. Previous studies have explored the effects of immune system changes after TBI. The NVU can help us further understand the immune regulation process. Herein, we enumerate the paradoxes of primary immune activation and chronic immunosuppression. We describe the changes in immune cells, cytokines/chemokines, and neuroinflammation after TBI. The post-immunomodulatory changes in NVU components are discussed, and research exploring immune changes in the NVU pattern is also described. Finally, we summarize immune regulation therapies and drugs after TBI. Therapies and drugs that focus on immune regulation have shown great potential for neuroprotection. These findings will help us further understand the pathological processes after TBI.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province 215006, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province 215006, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China.
| |
Collapse
|
6
|
Biesterveld BE, Siddiqui AZ, O'Connell RL, Remmer H, Williams AM, Shamshad A, Smith WM, Kemp MT, Wakam GK, Alam HB. Valproic Acid Protects Against Acute Kidney Injury in Hemorrhage and Trauma. J Surg Res 2021; 266:222-229. [PMID: 34023578 DOI: 10.1016/j.jss.2021.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/22/2021] [Accepted: 04/10/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Trauma is the leading cause of death among young people. These patients have a high incidence of kidney injury, which independently increases the risk of mortality. As valproic acid (VPA) treatment has been shown to improve survival in animal models of lethal trauma, we hypothesized that it would also attenuate the degree of acute kidney injury. METHODS We analyzed data from two separate experiments where swine were subjected to lethal insults. Model 1: hemorrhage (50% blood volume hemorrhage followed by 72-h damage control resuscitation). Model 2: polytrauma (traumatic brain injury, 40% blood volume hemorrhage, femur fracture, rectus crush and grade V liver laceration). Animals were resuscitated with normal saline (NS) +/- VPA 150 mg/kg after a 1-h shock phase in both models (n = 5-6/group). Serum samples were analyzed for creatinine (Cr) using colorimetry on a Liasys 330 chemistry analyzer. Proteomic analysis was performed on kidney tissue sampled at the time of necropsy. RESULTS VPA treatment significantly (P < 0.05) improved survival in both models. (Model 1: 80% vs 20%; Model 2: 83% vs. 17%). Model 1 (Hemorrhage alone): Cr increased from a baseline of 1.2 to 3.0 in NS control animals (P < 0.0001) 8 h after hemorrhage, whereas it rose only to 2.1 in VPA treated animals (P = 0.004). Model 2 (Polytrauma): Cr levels increased from baseline of 1.3 to 2.5 mg/dL (P = 0.01) in NS control animals 4 h after injury but rose to only 1.8 in VPA treated animals (P = 0.02). Proteomic analysis of kidney tissue identified metabolic pathways were most affected by VPA treatment. CONCLUSIONS A single dose of VPA (150 mg/kg) offers significant protection against acute kidney injury in swine models of polytrauma and hemorrhagic shock.
Collapse
Affiliation(s)
| | - Ali Z Siddiqui
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Rachel L O'Connell
- Department of Surgery, University of Michigan, Ann Arbor, MI; Department of Surgery, Northwestern University, Chicago, IL
| | - Henriette Remmer
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| | | | - Alizeh Shamshad
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - William M Smith
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Michael T Kemp
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Glenn K Wakam
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Hasan B Alam
- Department of Surgery, University of Michigan, Ann Arbor, MI; Department of Surgery, Northwestern University, Chicago, IL
| |
Collapse
|
7
|
Pumiglia L, Williams AM, Kemp MT, Wakam GK, Alam HB, Biesterveld BE. Brain proteomic changes by histone deacetylase inhibition after traumatic brain injury. Trauma Surg Acute Care Open 2021; 6:e000682. [PMID: 33880414 PMCID: PMC7993337 DOI: 10.1136/tsaco-2021-000682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 11/04/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. There are currently no cytoprotective treatments for TBI. There is growing evidence that the histone deacetylase inhibitor valproic acid (VPA) may be beneficial in the treatment of TBI associated with hemorrhagic shock and in isolation. We sought to further evaluate the mechanistic underpinnings of this demonstrated efficacy via proteomic analysis of injured brain tissue. Methods Swine were subjected to TBI via controlled cortical impact, randomized to treatment with VPA or control and observed for 6 hours. The brains of the pigs were then sectioned, and tissue was prepared and analyzed for proteomic data, including gene ontology (GO), gene-set enrichment analysis and enrichment mapping, and network mapping. Results Proteomic analysis demonstrated differential expression of hundreds of proteins in injured brain tissue after treatment with VPA. GO analysis and network analyses revealed groups of proteins and processes that are known to modulate injury response after TBI and impact cell fate. Processes affected included protein targeting and transport, cation and G-protein signaling, metabolic response, neurotransmitter response and immune function. Discussion This proteomic analysis provides initial mechanistic insight into the observed rescue of injured brain tissue after VPA administration in isolated TBI. Level of evidence Not applicable (animal study).
Collapse
Affiliation(s)
| | - Aaron M Williams
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael T Kemp
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Glenn K Wakam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Surgery, Northwestern University, Evanston, Illinois, USA
| | - Ben E Biesterveld
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Biesterveld BE, O'Connell R, Kemp MT, Wakam GK, Williams AM, Pai MP, Alam HB. Validation of intraosseous delivery of valproic acid in a swine model of polytrauma. Trauma Surg Acute Care Open 2021; 6:e000683. [PMID: 33791436 PMCID: PMC7978107 DOI: 10.1136/tsaco-2021-000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 11/03/2022] Open
Abstract
Background Intraosseous (IO) drug delivery may be necessary in emergency situations when intravenous access is unattainable. Valproic acid (VPA) is a histone deacetylase inhibitor that has previously been shown to improve survival in preclinical models of lethal polytrauma. In this study, we sought to compare serum levels of intravenously and IO-delivered VPA, and to analyze the effect of IO-delivered VPA. Methods Swine were subjected to 40% blood volume hemorrhage, brain injury, femur fracture, rectus crush injury and liver laceration. After 1 hour of shock, animals were randomized (n=3/group) to receive normal saline resuscitation (control), normal saline+intravenous VPA 150 mg/kg (intravenous group) or normal saline +IO VPA 150 mg/kg (IO group). Serum levels of VPA were assessed between groups, and proteomics analyses were performed on IO and control groups on heart, lung and liver samples. Results Intravenous and IO serum VPA levels were similar at 1, 3, 5 and 7 hours after starting the infusion (p>0.05). IO-delivered VPA induced significant proteomics changes in the heart, lung and liver, which were most pronounced in the lung. Biologic processes affected included inflammation, metabolism and transcriptional & translational machinery. The control group had 0% survival, and the intravenous and IO group both had 100% survival to the end of the experiment (p<0.05). Discussion IO-delivered VPA is noninferior to intravenous administration and is a viable option in emergent situations when intravenous access is unattainable. Level of evidence Not applicable (animal study).
Collapse
Affiliation(s)
- Ben E Biesterveld
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel O'Connell
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Surgery, Northwestern University, Evanston, Illinois, USA
| | - Michael T Kemp
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Glenn K Wakam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron M Williams
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Surgery, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
9
|
What's New in Shock? January 2021. Shock 2021; 55:1-4. [PMID: 33337785 DOI: 10.1097/shk.0000000000001697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|