1
|
Tong-Minh K, van Leeuwen L, Ramakers C, Chen UI, Liesenfeld O, Gommers D, van Gorp E, Endeman H, van der Does Y. A 29-mRNA host response test to identify bacterial and viral infections and to predict 30-day mortality in emergency department patients with suspected infections: A prospective observational cohort study. Diagn Microbiol Infect Dis 2024; 111:116599. [PMID: 39657556 DOI: 10.1016/j.diagmicrobio.2024.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
INTRODUCTION The goal of this study is to validate the accuracy of the 29-mRNA host response classifiers Inflammatix Bacterial-Viral-Non infected-3b (IMX-BVN-3b) and Severity-3b (IMX-SEV-3b) to identify bacterial and viral infections and to predict 30-day mortality in patients with suspected infections in the ED. METHODS This prospective observational cohort study enrolled patients with suspected infections in a tertiary ED. IMX-BVN-3b was compared to clinically forced and consensus adjudicated bacterial/viral infection status and IMX-SEV-3b was compared to 30-day mortality. RESULTS A total of 688 patients were enrolled. Using forced adjudication, the AUC for the diagnosis of bacterial infection by IMX-BVN-3b was 0.76 (95 % CI: 0.72 - 0.80). The AUC for the diagnosis of viral infections was 0.89 (95 %CI 0.84-0.95). IMX-SEV-3b had an AUC of 0.77 (95 % CI: 0.68 - 0.85) on 30-day mortality. CONCLUSION The 29-gene host response classifiers IMX-BVN-3b and IMX-SEV-3b identify viral and bacterial infections and predict 30-day mortality in patients with suspected infections in the ED.
Collapse
Affiliation(s)
- Kirby Tong-Minh
- Department of Emergency Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Leanne van Leeuwen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Christian Ramakers
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Uan-I Chen
- Inflammatix Inc., Sunnyvale, California, USA.
| | | | - Diederik Gommers
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Eric van Gorp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Yuri van der Does
- Department of Emergency Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Carroll KC. Assessment of MeMed BV assays for differentiating between bacterial and viral respiratory infections. Expert Rev Mol Diagn 2024; 24:873-884. [PMID: 39314006 DOI: 10.1080/14737159.2024.2408743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Distinguishing bacterial from viral infections remains a challenge due to clinically indistinguishable presentations. Non-infectious conditions such as malignancy, pulmonary emboli and rheumatological conditions may also present with fever. Consequently, patients are often over-treated with antimicrobial agents or may not receive adequate therapy. AREAS COVERED This article provides a comprehensive review of a novel protein host-signature assay, the MeMed BV assay, that distinguishes bacterial from viral infections. The focus is on the use of the test in respiratory tract infections including assay performance characteristics, clinical profiles and data on cost-effectiveness. The changing landscape from the use of single inflammatory biomarkers, such as C-reactive protein, to alternative and diverse host signature biomarkers, is also discussed. EXPERT OPINION The MeMed BV assay is one of several novel host biomarkers that provide rapid results and demonstrate enhanced performance compared to single test biomarkers. This assay has been validated by a large number of carefully controlled clinical trials that demonstrate improved performance characteristics for distinguishing bacterial infections or combined bacterial/viral infections from viral or noninfectious causes of fever compared to C-reactive protein and procalcitonin. However, these trials may over-state assay performance as samples with equivocal band results are often not included in the statistical analysis. More real-world studies addressing clinical implementation of the MeMed BV assay or other biomarkers into ambulatory settings are needed.
Collapse
Affiliation(s)
- Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Halder A, Liesenfeld O, Whitfield N, Uhle F, Schenz J, Mehrabi A, Schmitt FCF, Weigand MA, Decker SO. A 29-mRNA host-response classifier identifies bacterial infections following liver transplantation - a pilot study. Langenbecks Arch Surg 2024; 409:185. [PMID: 38865015 PMCID: PMC11169022 DOI: 10.1007/s00423-024-03373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Infections are common complications in patients following liver transplantation (LTX). The early diagnosis and prognosis of these infections is an unmet medical need even when using routine biomarkers such as C-reactive protein (CRP) and procalcitonin (PCT). Therefore, new approaches are necessary. METHODS In a prospective, observational pilot study, we monitored 30 consecutive patients daily between days 0 and 13 following LTX using the 29-mRNA host classifier IMX-BVN-3b that determine the likelihood of bacterial infections and viral infections. True infection status was determined using clinical adjudication. Results were compared to the accuracy of CRP and PCT for patients with and without bacterial infection due to clinical adjudication. RESULTS Clinical adjudication confirmed bacterial infections in 10 and fungal infections in 2 patients. 20 patients stayed non-infected until day 13 post-LTX. IMX-BVN-3b bacterial scores were increased directly following LTX and decreased until day four in all patients. Bacterial IMX-BVN-3b scores detected bacterial infections in 9 out of 10 patients. PCT concentrations did not differ between patients with or without bacterial, whereas CRP was elevated in all patients with significantly higher levels in patients with bacterial infections. CONCLUSION The 29-mRNA host classifier IMX-BVN-3b identified bacterial infections in post-LTX patients and did so earlier than routine biomarkers. While our pilot study holds promise future studies will determine whether these classifiers may help to identify post-LTX infections earlier and improve patient management. CLINICAL TRIAL NOTATION German Clinical Trials Register: DRKS00023236, Registered 07 October 2020, https://drks.de/search/en/trial/DRKS00023236.
Collapse
Affiliation(s)
- Amelie Halder
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | | | | | - Florian Uhle
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Judith Schenz
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Arianeb Mehrabi
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral & Transplantation Surgery, Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Felix C F Schmitt
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Markus A Weigand
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Sebastian O Decker
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Xiao H, Zhang H, Wang G, Wang Y, Tan Z, Sun X, Zhou J, Duan M, Zhi D, Hang C, Zhang G, Li Y, Wu C, Zhang H, Xie M, Li C. COMPARISON AMONG PRESEPSIN, PROCALCITONIN, AND C-REACTIVE PROTEIN IN PREDICTING BLOOD CULTURE POSITIVITY AND PATHOGEN IN SEPSIS PATIENTS. Shock 2024; 61:387-394. [PMID: 37878488 DOI: 10.1097/shk.0000000000002243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Background: Sepsis is caused by the invasion of the bloodstream by microorganisms from local sites of infection, leading to high mortality. This study aimed to compare the predictive ability of the biomarkers presepsin, procalcitonin (PCT), and C-reactive protein for bacteraemia. Methods: In this retrospective, multicentre study, a dataset of patients with sepsis who were prospectively enrolled between November 2017 and June 2021 was analyzed. The performances of the biomarkers for predicting positive blood cultures and infection with specific pathogens were assessed by the areas under the receiver operating characteristic curves (AUCs). The independent effects of the pathogen and foci of infection on presepsin and PCT levels were assessed by linear logistic regression models. Results: A total of 577 patients with 170 positive blood cultures (29.5%) were enrolled. The AUC achieved using PCT levels (0.856) was significantly higher than that achieved using presepsin (0.786, P = 0.0200) and C-reactive protein (0.550, P < 0.0001) levels in predicting bacteraemia. The combined analysis of PCT and presepsin levels led to a significantly higher AUC than the analysis of PCT levels alone for predicting blood culture positivity (0.877 vs. 0.856, P = 0.0344) and gram-negative bacteraemia (0.900 vs. 0.875, P = 0.0216). In a linear regression model, the elevated concentrations of presepsin and PCT were both independently related to Escherichia coli , Klebsiella species, Pseudomonas species, and Streptococcus species infections and Sequential Organ Failure Assessment score. Presepsin levels were also associated with Acinetobacter species and abdominal infection, and PCT levels were positively associated with other Enterobacteriaceae and negatively associated with respiratory infection. Combined analysis of presepsin and PCT levels provided a high sensitivity and specificity in identifying E. coli or Klebsiella species infection. Conclusions: Presepsin and PCT were promising markers for predicting bacteraemia and common pathogens at the time of sepsis onset with a synergistic effect.
Collapse
Affiliation(s)
- Hongli Xiao
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hanyu Zhang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guoxing Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhimin Tan
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuelian Sun
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie Zhou
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Deyuan Zhi
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chenchen Hang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Emergency Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing, China
| | - Caijun Wu
- Department of Emergency Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Zhang
- Department of Emergency Medicine, The Hospital of Shunyi District Beijing, China Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunsheng Li
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Barrios EL, Mazer MB, McGonagill PW, Bergmann CB, Goodman MD, Gould RW, Rao M, Polcz VE, Davis RJ, Del Toro DE, Dirain ML, Dram A, Hale LO, Heidarian M, Kim CY, Kucaba TA, Lanz JP, McCray AE, Meszaros S, Miles S, Nelson CR, Rocha IL, Silva EE, Ungaro RF, Walton AH, Xu J, Zeumer-Spataro L, Drewry AM, Liang M, Bible LE, Loftus TJ, Turnbull IR, Efron PA, Remy KE, Brakenridge SC, Badovinac VP, Griffith TS, Moldawer LL, Hotchkiss RS, Caldwell CC. Adverse outcomes and an immunosuppressed endotype in septic patients with reduced IFN-γ ELISpot. JCI Insight 2024; 9:e175785. [PMID: 38100268 PMCID: PMC10906237 DOI: 10.1172/jci.insight.175785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Monty B. Mazer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Patrick W. McGonagill
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Christian B. Bergmann
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- University Hospital Ulm, Clinic for Trauma Surgery, Hand, Plastic, and Reconstructive Surgery Albert-Einstein-Allee 23, Ulm, Germany
| | - Michael D. Goodman
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert W. Gould
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahil Rao
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ruth J. Davis
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Drew E. Del Toro
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marvin L.S. Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alexandra Dram
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucas O. Hale
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mohammad Heidarian
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Caleb Y. Kim
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Tamara A. Kucaba
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jennifer P. Lanz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ashley E. McCray
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sandra Meszaros
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sydney Miles
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Candace R. Nelson
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ivanna L. Rocha
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Elvia E. Silva
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ricardo F. Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Andrew H. Walton
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Xu
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Leilani Zeumer-Spataro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Anne M. Drewry
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muxuan Liang
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida College of Public Health and Health Professions and the University of Florida College of Medicine, Gainesville, Florida, USA
| | - Letitia E. Bible
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Isaiah R. Turnbull
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kenneth E. Remy
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Scott C. Brakenridge
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vladimir P. Badovinac
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Experimental Pathology PhD Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Minneapolis VA Healthcare System, Minneapolis, Minnesota, USA
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles C. Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Barrios EA, Mazer MB, McGonagill P, Bergmann CB, Goodman MD, Gould R, Rao M, Polcz V, Davis R, Del Toro D, Dirain M, Dram A, Hale L, Heidarian M, Kucaba TA, Lanz JP, McCray A, Meszaros S, Miles S, Nelson C, Rocha I, Silva EE, Ungaro R, Walton A, Xu J, Zeumer-Spataro L, Drewry A, Liang M, Bible LE, Loftus T, Turnbull I, Efron PA, Remy KE, Brakenridge S, Badovinac VP, Griffith TS, Moldawer LL, Hotchkiss RS, Caldwell CC. Adverse Long-Term Outcomes and an Immune Suppressed Endotype in Sepsis Patients with Reduced Interferon-γELISpot: A Multicenter, Prospective Observational Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.13.23295360. [PMID: 37745385 PMCID: PMC10516075 DOI: 10.1101/2023.09.13.23295360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Sepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients has generally relied on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision. METHODS An ex vivo whole blood enzyme-linked immunosorbent (ELISpot) assay for cellular production of interferon-γ (IFN-γ) was evaluated in 107 septic and 68 non-septic patients from five academic health centers using blood samples collected on days 1, 4 and 7 following ICU admission. RESULTS Compared with 46 healthy subjects, unstimulated and stimulated whole blood IFNγ expression were either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole blood IFNγ expression was significantly reduced on ICU days 1, 4 and 7 (all p<0.05), due to both significant reductions in total number of IFNγ producing cells and amount of IFNγ produced per cell (all p<0.05). Importantly, IFNγ total expression on day 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6 and procalcitonin. Septic patients with low IFNγ expression were older and had lower ALC and higher sPD-L1 and IL-10 concentrations, consistent with an immune suppressed endotype. CONCLUSIONS A whole blood IFNγ ELISpot assay can both identify septic patients at increased risk of late mortality, and identify immune-suppressed, sepsis patients.
Collapse
|