1
|
Liu WT, Li CQ, Fu AN, Yang HT, Xie YX, Yao H, Yi GH. Therapeutic implication of targeting mitochondrial drugs designed for efferocytosis dysfunction. J Drug Target 2024; 32:1169-1185. [PMID: 39099434 DOI: 10.1080/1061186x.2024.2386620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Chao-Quan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Ao-Ni Fu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hao-Tian Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| |
Collapse
|
2
|
Pi D, Zheng L, Gao C, Xiao C, Yu Z, Fu Y, Li J, Chen C, Liu C, Zou Z, Xu F. RENIN AND ANGIOTENSIN (1-7) OFFER PREDICTIVE VALUE IN PEDIATRIC SEPSIS: FINDINGS FROM PROSPECTIVE OBSERVATIONAL COHORTS. Shock 2024; 62:488-495. [PMID: 39012767 DOI: 10.1097/shk.0000000000002417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ABSTRACT Background: Pediatric sepsis is a common and complex syndrome characterized by a dysregulated immune response to infection. Aberrations in the renin-angiotensin system (RAS) are factors in several infections of adults. However, the precise impact of RAS dysregulation in pediatric sepsis remains unclear. Methods: Serum samples were collected from a derivation cohort (58 patients with sepsis, 14 critically ill control subjects, and 37 healthy controls) and validation cohort (50 patients with sepsis, 37 critically ill control subjects, and 46 healthy controls). Serum RAS levels on day of pediatric intensive care unit admission were determined and compared with survival status and organ dysfunction. Results: In the derivation cohort, the serum renin concentration was significantly higher in patients with sepsis (3,678 ± 4,746) than that in healthy controls (635.6 ± 199.8) ( P < 0.0001). Meanwhile, the serum angiotensin (1-7) was significantly lower in patients with sepsis (89.7 ± 59.7) compared to that in healthy controls (131.4 ± 66.4) ( P < 0.01). These trends were confirmed in a validation cohort. Nonsurvivors had higher levels of renin (8,207 ± 7,903) compared to survivors (2,433 ± 3,193) ( P = 0.0001) and lower levels of angiotensin (1-7) (60.9 ± 51.1) compared to survivors (104.0 ± 85.1) ( P < 0.05). A combination of renin, angiotensin (1-7) and procalcitonin achieved a model for diagnosis with an area under the receiver operating curve of 0.87 (95% CI: 0.81-0.92). Conclusion: Circulating renin and angiotensin (1-7) have predictive value in pediatric sepsis.
Collapse
Affiliation(s)
- Dandan Pi
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Caixia Gao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Changxue Xiao
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Zhicai Yu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Yueqiang Fu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Jing Li
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Chengjun Liu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | | | - Feng Xu
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
3
|
An M, Fu X, Meng X, Liu H, Ma Y, Li Y, Li Q, Chen J. PI3K/AKT signaling pathway associates with pyroptosis and inflammation in patients with endometriosis. J Reprod Immunol 2024; 162:104213. [PMID: 38364342 DOI: 10.1016/j.jri.2024.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Endometriosis (EMS) is known to be closely associated with inflammation. We evaluate the possible mechanism linking the PI3K/AKT signaling pathway with pyroptosis and inflammation in EMS. We collected 30 patients undergoing laparoscopic for endometriosis as the EMS group and those undergoing surgery for uterine fibroids as the control group, from whom we collected serum, normal endometrium, eutopic endometrium and ectopic endometrium. Transmission electron microscopy (TEM) was used to observe the internal structure of endometrial cells. Western Blot was used to detect the protein expression of PI3K, P-PI3K, AKT, P-AKT, NLRP3, Caspase-1, GSDMD, and GSDMD-N. Immunohistochemistry (IHC) staining was used to detect the expression of PI3K, AKT, NLRP3, Caspase-1, GSDMD, and GSDMD-N proteins. Immunofluorescence (IF) staining was used to observe the expression of GSDMD-N. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the mRNA levels of PI3K, AKT, NLRP3, Caspase-1, GSDMD, and GSDMD-N. ELISA was used to detect serum levels of IL-1β, IL-18, TLR4, and NF-κB. We found that activation of PI3K/AKT signaling pathway in endometriosis significantly increased the level of cellular pyroptosis and inflammatory factors. Our results suggest that there is a positive correlation between the PI3K/AKT signaling pathway and pyroptosisas well as inflammation in EMS patients.
Collapse
Affiliation(s)
- Mingli An
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinping Fu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xin Meng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Huimin Liu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yiming Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ying Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qingxue Li
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jingwei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Shijiazhuang, China.
| |
Collapse
|