1
|
van Leeuwen ALI, Borgdorff MP, Dekker NAM, van den Brom CE. Therapeutically Targeting Microvascular Leakage in Experimental Hemorrhagic SHOCK: A Systematic Review and Meta-Analysis. Shock 2021; 56:890-900. [PMID: 33927137 DOI: 10.1097/shk.0000000000001796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Microvascular leakage is proposed as main contributor to disturbed microcirculatory perfusion following hemorrhagic shock and fluid resuscitation, leading to organ dysfunction and unfavorable outcome. Currently, no drugs are available to reduce or prevent microvascular leakage in clinical practice. We therefore aimed to provide an overview of therapeutic agents targeting microvascular leakage following experimental hemorrhagic shock and fluid resuscitation. METHODS PubMed, EMBASE.com, and Cochrane Library were searched in January 2021 for preclinical studies of hemorrhagic shock using any therapeutic agent on top of standard fluid resuscitation. Primary outcome was vascular leakage, defined as edema, macromolecule extravasation, or glycocalyx degradation. Drugs were classified by targeting pathways and subgroup analyses were performed per organ. RESULTS Forty-five studies, published between 1973 and 2020, fulfilled eligibility criteria. The included studies tested 54 different therapeutics mainly in pulmonary and intestinal vascular beds. Most studies induced trauma besides hemorrhagic shock. Forty-four therapeutics (81%) were found effective to reduce microvascular leakage, edema formation, or glycocalyx degradation in at least one organ. Targeting oxidative stress and apoptosis was the predominantly effective strategy (SMD: -2.18, CI [-3.21, -1.16], P < 0.0001). Vasoactive agents were found noneffective in reducing microvascular leakage (SMD: -0.86, CI [-3.07, 1.36], P = 0.45). CONCLUSION Pharmacological modulation of pathways involved in cell metabolism, inflammation, endothelial barrier regulation, sex hormones and especially oxidative stress and apoptosis were effective in reducing microvascular leakage in experimental hemorrhagic shock with fluid resuscitation. Future studies should investigate whether targeting these pathways can restore microcirculatory perfusion and reduce organ injury following hemorrhagic shock. SYSTEMATIC REVIEW REGISTRATION NUMBER CRD42018095432.
Collapse
Affiliation(s)
- Anoek L I van Leeuwen
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Marieke P Borgdorff
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nicole A M Dekker
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Maganeva IS, Gorbacheva AM, Bibik EE, Aboisheva EA, Eremkina AK, Mokrysheva NG. Mineral metabolism and COVID-19: is there a connection? TERAPEVT ARKH 2021; 93:1227-1233. [DOI: 10.26442/00403660.2021.10.201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
Due to global spread of COVID-19, the search for new factors that could influence its clinical course becomes highly important. This review summarize the relevant publications on the association between immune system and the main regulators of mineral homeostasis including. In addition, we have highlighted the various aspects of phosphorus-calcium metabolism related to the acute respiratory diseases and in particular to COVID-19. The data about the calcium-phosphorus metabolism in SARS-CoV-2 infection is required to understand the possible clinical implications and to develop new therapeutic and preventive interventions.
Collapse
|
3
|
D'Elia JA, Weinrauch LA. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int J Mol Sci 2018; 19:E2465. [PMID: 30134544 PMCID: PMC6164603 DOI: 10.3390/ijms19092465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Immunosuppression may occur for a number of reasons related to an individual's frailty, debility, disease or from therapeutic iatrogenic intervention or misadventure. A large percentage of morbidity and mortality in immunodeficient populations is related to an inadequate response to infectious agents with slow response to antibiotics, enhancements of antibiotic resistance in populations, and markedly increased prevalence of acute inflammatory response, septic and infection related death. Given known relationships between intracellular calcium ion concentrations and cytotoxicity and cellular death, we looked at currently available data linking blockade of calcium ion channels and potential decrease in expression of sepsis among immunosuppressed patients. Notable are relationships between calcium, calcium channel, vitamin D mechanisms associated with sepsis and demonstration of antibiotic-resistant pathogens that may utilize channels sensitive to calcium channel blocker. We note that sepsis shock syndrome represents loss of regulation of inflammatory response to infection and that vitamin D, parathyroid hormone, fibroblast growth factor, and klotho interact with sepsis defense mechanisms in which movement of calcium and phosphorus are part of the process. Given these observations we consider that further investigation of the effect of relatively inexpensive calcium channel blockade agents of infections in immunosuppressed populations might be worthwhile.
Collapse
Affiliation(s)
- John A D'Elia
- E P Joslin Research Laboratory, Kidney and Hypertension Section, Joslin Diabetes Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, 521 Mount Auburn Street Watertown, MA 02472, USA. jd'
| | - Larry A Weinrauch
- E P Joslin Research Laboratory, Kidney and Hypertension Section, Joslin Diabetes Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, 521 Mount Auburn Street Watertown, MA 02472, USA.
| |
Collapse
|
4
|
D'Elia JA, Gleason RE, Monaco AP, Weinrauch LA. Does calcium channel blockade have a role in prevention of expression of sepsis in renal transplant recipients? Int J Nephrol Renovasc Dis 2016; 9:291-295. [PMID: 27920569 PMCID: PMC5125997 DOI: 10.2147/ijnrd.s121492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many antihypertensive agents have been demonstrated to assist in preservation of kidney function, among them those that modulate calcium channels. Calcium channel blockers may also be of value in protecting hemodialysis patients from complications of sepsis. In diabetic recipients of kidney transplant allografts treated with cyclosporine, calcium channel blockade has been retrospectively linked to improved graft preservation and to fewer episodes of sepsis. This brief review outlines clinical and experimental publications on potential protection from sepsis by addition of calcium channel blockers to standard antibiotic therapy in individuals who may or may not have normal kidney function, or in the presence or absence of immunosuppression. Such mechanisms include blockade of antibiotic cytosolic extrusion in the cases of Pneumococci, Mycobacterium tuberculosis, Plasmodium falciparum malaria, or Schistosoma mansoni; blockade of the calcineurin/calmodulin pathway (in immunosuppressed patients allowing for lower dosage of cyclosporine); stabilization of calcium movement at the level of sarcoplasmic reticulum by which shock (vasopressor instability) is prevented; or of cytosolic calcium influx and cell death (in the case of allograft acute tubular necrosis). Given the high cost of development of new antibiotics, a role for generic calcium channel blockade in sepsis prevention should be pursued by additional studies to investigate potential links between blockade of calcium channels and expression of sepsis in at-risk populations.
Collapse
Affiliation(s)
- John A D'Elia
- Kidney and Hypertension Section, Joslin Diabetes Center, Boston, MA; Departments of Surgery and Medicine, Beth Israel Deaconess Medical Center, Boston, MA; Harvard Medical School, Boston MA
| | | | - Anthony P Monaco
- Departments of Surgery and Medicine, Beth Israel Deaconess Medical Center, Boston, MA; Harvard Medical School, Boston MA
| | - Larry A Weinrauch
- Kidney and Hypertension Section, Joslin Diabetes Center, Boston, MA; Departments of Surgery and Medicine, Beth Israel Deaconess Medical Center, Boston, MA; Harvard Medical School, Boston MA; Department of Medicine, Mount Auburn Hospital, Cambridge, MA, USA
| |
Collapse
|
5
|
The therapeutic effect and mechanism of niacin on acute lung injury in a rat model of hemorrhagic shock. J Trauma Acute Care Surg 2015. [DOI: 10.1097/ta.0000000000000761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Hardy BM, Yoshino O, Quail AW, Balogh ZJ. Influence of the timing of internal fixation of femur fractures during shock resuscitation on remote organ damage. ANZ J Surg 2015; 85:966-71. [PMID: 26077865 DOI: 10.1111/ans.13197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Reamed intramedullary nailing is the gold standard for management of femur fractures. Nailing within 24 h is proven to reduce complications from ongoing bleeding, soft-tissue damage and pain. However, when combined with haemorrhagic shock, femur fracture and intramedullary nailing are associated with immune-mediated damage to remote organs. We studied whether delaying fracture fixation until resuscitation was succeeding would lead to a significant reduction in remote organ damage. METHODS Twenty male rabbits underwent closed femur fracture, haemorrhagic shock, resuscitation and either immediate nailing (group: ImmFix, n = 9), delayed nailing (group: DelFix, n = 8) or just splinting (group: NoFix, n = 3). Haemorrhagic shock was maintained for 60 min. Resuscitation was with shed blood and Hartmann's solution. Animals were euthanized 8 h after fixation; the lungs and small bowel were scored histologically by two pathologists. RESULTS Groups did not differ in weight, haemorrhage volume or magnitude of shock. At 8 h, there was no difference in end-organ damage between ImmFix and DelFix groups (11.3 ± 1.6 and 13.2 ± 1.6 versus 8.1 ± 1.3 and 12.9 ± 1.1, P = 0.26 between groups). However, the NoFix group had significantly greater end-organ damage when compared with the fixation at any time groups (17.3 ± 2.7 and 17.0 ± 3.3 versus 9.8 ± 1.1 and 13.1 ± 1, P = 0.01 between groups). CONCLUSION In this laboratory model, we have demonstrated that timely femur fracture fixation outweighs the potential harmful effects of surgery performed during haemorrhagic shock with simultaneous resuscitation. We have failed to demonstrate a difference between immediate and delayed fixation during resuscitation.
Collapse
Affiliation(s)
- Benjamin M Hardy
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Osamu Yoshino
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Anthony W Quail
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Department of Anaesthesia and Intensive Care, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Zsolt J Balogh
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
7
|
Vinokurov MG, Astashkin EI, Yurinskaya MM, Glezer MG, Sobolev KE, Grachev SV. Trimetazidine blocks store-operated Ca(2+) channels in HL-60 and THP-1 cell lines and inhibits the secretion of tumor necrosis factor. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 441:417-20. [PMID: 22227695 DOI: 10.1134/s0012496611060147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Indexed: 11/22/2022]
Affiliation(s)
- M G Vinokurov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Bacterial DNA (bDNA) can activate an innate-immune stimulatory "danger" response via toll-like receptor 9 (TLR9). Mitochondrial DNA (mtDNA) is unique among endogenous molecules in that mitochondria evolved from prokaryotic ancestors. Thus, mtDNA retains molecular motifs similar to bDNA. It is unknown, however, whether mtDNA is released by shock or is capable of eliciting immune responses like bDNA. We hypothesized shock-injured tissues might release mtDNA and that mtDNA might act as a danger-associated molecular pattern (or "alarmin") that can activate neutrophils (PMNs) and contribute to systemic inflammatory response syndrome. Standardized trauma/hemorrhagic shock caused circulation of mtDNA as well as nuclear DNA. Human PMNs were incubated in vitro with purified mtDNA or nuclear DNA, with or without pretreatment by chloroquine (an inhibitor of endosomal receptors like TLR9). Neutrophil activation was assessed as matrix metalloproteinase (MMP) 8 and MMP-9 release as well as p38 and p44/42 mitogen-activated protein kinase (MAPK) phosphorylation. Mitochondrial DNA induced PMN MMP-8/MMP-9 release and p38 phosphorylation but did not activate p44/42. Responses were inhibited by chloroquine. Nuclear DNA did not induce PMN activation. Intravenous injection of disrupted mitochondria (mitochondrial debris) into rats induced p38 MAPK activation and IL-6 and TNF-alpha accumulation in the liver. In summary, mtDNA is released into the circulation by shock. Mitochondrial DNA activates PMN p38 MAPK, probably via TLR9, inducing an inflammatory phenotype. Mitochondrial DNA may act as a danger-associated molecular pattern or alarmin after shock, contributing to the initiation of systemic inflammatory response syndrome.
Collapse
|
9
|
Abstract
BACKGROUND In previous animal studies, induction of therapeutic hypothermia (HT) in hemorrhagic shock (HS) had beneficial effects on the hemodynamic and metabolic parameters and on the survival. However, the effect of induced HT on acute lung injury (ALI) in HS has not been investigated. We sought to determine the effects of HT on ALI in HS. METHODS Male Sprague-Dawley rats (350-390 g; n = 8 per group) were randomized to the normothermia (NT; 36-37 degrees C) group or the moderate HT (27-30 degrees C) group and were subjected to volume-controlled (2 mL/100 g weight) HS (90 minutes) followed by 90 minutes of resuscitation. ALI score, lung malondialdehyde content, and myeloperoxidase activity were measured. The expression of glycogen synthase kinase 3beta (GSK-3beta), phosphorylated GSK-3beta, inducible nitric oxide synthase (iNOS), heat shock protein (HSP) 72, and nuclear factor-kappaB (NF-kappaB) in the lung were compared. RESULTS ALI score, lung malondialdehyde content, and myeloperoxidase were lower in the HT group. GSK-3beta and iNOS gene expressions in lung tissue were significantly decreased in the HT group (p < 0.05). On the contrary, the expression of phosphorylated GSK-3beta was increased in the HT group (p < 0.001). HSP 72 was expressed in the HT group but not in the NT group. The activated p65 NF-kappaB levels in lung nuclear extract were significantly lower in the NT group (p = 0.03). CONCLUSIONS HT attenuates HS-induced ALI in rats by the modulation of GSK, HSP 72, iNOS, and NF-kappaB.
Collapse
|
10
|
Wu D, Qi J, Dai H, Doods H, Abraham WM. Resuscitation with Na+/H+exchanger inhibitor in traumatic haemorrhagic shock: Cardiopulmonary performance, oxygen transport and tissue inflammation. Clin Exp Pharmacol Physiol 2010; 37:337-42. [DOI: 10.1111/j.1440-1681.2009.05296.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Highly pathogenic H5N1 avian influenza virus induces extracellular Ca2+ influx, leading to apoptosis in avian cells. J Virol 2010; 84:3068-78. [PMID: 20053741 DOI: 10.1128/jvi.01923-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we show that the highly pathogenic H5N1 avian influenza virus (AIV) (A/crow/Kyoto/53/04 and A/chicken/Egypt/CL6/07) induced apoptosis in duck embryonic fibroblasts (DEF). In contrast, apoptosis was reduced among cells infected with low-pathogenic AIVs (A/duck/HK/342/78 [H5N2], A/duck/HK/820/80 [H5N3], A/wigeon/Osaka/1/01 [H7N7], and A/turkey/Wisconsin/1/66 [H9N2]). Thus, we investigated the molecular mechanisms of apoptosis induced by H5N1-AIV infection. Caspase-dependent and -independent pathways contributed to the cytopathic effects. We further showed that, in the induction of apoptosis, the hemagglutinin of H5N1-AIV played a major role and its cleavage sequence was not critical. We also observed outer membrane permeabilization and loss of the transmembrane potential of the mitochondria of infected DEF, indicating that mitochondrial dysfunction was caused by the H5N1-AIV infection. We then analyzed Ca(2+) dynamics in the infected cells and demonstrated an increase in the concentration of Ca(2+) in the cytosol ([Ca(2+)](i)) and mitochondria ([Ca(2+)](m)) after H5N1-AIV infection. Regardless, gene expression important for regulating Ca(2+) efflux from the endoplasmic reticulum did not significantly change after H5N1-AIV infection. These results suggest that extracellular Ca(2+) may enter H5N1-AIV-infected cells. Indeed, EGTA, which chelates extracellular free Ca(2+), significantly reduced the [Ca(2+)](i), [Ca(2+)](m), and apoptosis induced by H5N1-AIV infection. In conclusion, we identified a novel mechanism for influenza A virus-mediated cell death, which involved the acceleration of extracellular Ca(2+) influx, leading to mitochondrial dysfunction and apoptosis. These findings may be useful for understanding the pathogenesis of H5N1-AIV in avian species as well as the impact of Ca(2+) homeostasis on influenza A virus infection.
Collapse
|
12
|
Ketamine delays mortality in an experimental model of hemorrhagic shock and subsequent sepsis. Resuscitation 2009; 80:935-9. [PMID: 19473743 DOI: 10.1016/j.resuscitation.2009.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/16/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND In previous studies ketamine was reported to improve survival and decrease serum interleukin-6 (IL-6) concentration after sepsis alone and after burn injury followed by sepsis. The aim of this study was to determine whether ketamine alters survival and/or IL-6 after hemorrhagic shock alone or hemorrhagic shock followed by sepsis. MATERIALS AND METHODS Rats were subjected to hemorrhagic shock with or without subsequent Gram-negative bacterial sepsis and were either treated with ketamine 5 mg/kg or were not treated. Blood was sampled for IL-6 determination prior to hemorrhage, at the completion of resuscitation, and at 6 and 30 h later. Mortality was recorded for 7 days following hemorrhage or hemorrhage+sepsis. RESULTS After hemorrhage+sepsis the time to median mortality was significantly later in the ketamine-treated group (36 h) than in the control group (12 h). At 12h the survival rate of the ketamine-treated group (100%) was significantly higher than in the control group (55%). There were no significant differences between groups with respect to IL-6 or 7-day survival after either hemorrhage+sepsis or hemorrhage alone. CONCLUSION Ketamine improved 12h survival and delayed mortality after hemorrhage+sepsis without significantly altering IL-6, and did not alter survival or IL-6 after hemorrhage alone.
Collapse
|
13
|
Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock 2008; 30:352-8. [PMID: 18317404 DOI: 10.1097/shk.0b013e31816a6bb1] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The release of "neutrophil extracellular traps" (NETs) has been identified as a novel immune response in innate immunity. Neutrophil extracellular traps are composed of neutrophil-derived circulating free DNA (cf-DNA), histones, and neutrophil cytoplasm-derived proteins such as proteases. Here, we studied the putative predictive value of plasma cf-DNA/NETs for the development of sepsis and mortality after multiple trauma. In a prospective pilot study with 45 multiple trauma (Injury Severity Score>16) patients, cf-DNA was directly quantified in plasma. Blood samples were sequentially obtained daily from admission to our Trauma Center until day 10. Because of limited intensive care unit (ICU) stay of less than 3 days, 8 patients have been excluded, resulting in 37 patients that were evaluated. Time kinetics of cf-DNA/NETs was compared with C-reactive protein (CRP), interleukin (IL) 6, leukocyte counts, and myeloperoxidase. The severity of the injury was calculated on the basis of the Injury Severity Score, as well as Multiple Organ Dysfunction Score, Sequential Organ Failure Assessment, and Simplified Acute Physiology Score II on ICU. Initially high cf-DNA/NETs values (>800 ng/mL) with recurrent increased values between days 5 to 9 were associated with subsequent sepsis, multiple organ failure, and death. In conjunction with cf-DNA/NETs, IL-6 was significantly elevated after admission. However, the development of a second hit was not indicated by IL-6. In contrast to cf-DNA/NETs, no difference in CRP kinetics was observed between patients with and without development of sepsis. Circulating free DNA/NETs kinetics rather followed kinetics of Multiple Organ Dysfunction Score, Sepsis-related Organ Failure Assessment, leukocyte counts, and partially of myeloperoxidase. Circulating free DNA/NETs seems to be a valuable additional marker for the calculation of injury severity and/or prediction of inflammatory second hit on ICU. However, a large clinical trial with severely injured patients should confirm the prognostic value of neutrophil-derived cf-DNA/NETs.
Collapse
|
14
|
WHAT'S NEW IN SHOCK, JULY 2008? Shock 2008; 30:1-2. [DOI: 10.1097/shk.0b013e31817537c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|