1
|
Shipley RJ, Smith AF, Sweeney PW, Pries AR, Secomb TW. A hybrid discrete-continuum approach for modelling microcirculatory blood flow. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2020; 37:40-57. [PMID: 30892609 DOI: 10.1093/imammb/dqz006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 11/15/2022]
Abstract
In recent years, biological imaging techniques have advanced significantly and it is now possible to digitally reconstruct microvascular network structures in detail, identifying the smallest capillaries at sub-micron resolution and generating large 3D structural data sets of size >106 vessel segments. However, this relies on ex vivo imaging; corresponding in vivo measures of microvascular structure and flow are limited to larger branching vessels and are not achievable in three dimensions for the smallest vessels. This suggests the use of computational modelling to combine in vivo measures of branching vessel architecture and flows with ex vivo data on complete microvascular structures to predict effective flow and pressures distributions. In this paper, a hybrid discrete-continuum model to predict microcirculatory blood flow based on structural information is developed and compared with existing models for flow and pressure in individual vessels. A continuum-based Darcy model for transport in the capillary bed is coupled via point sources of flux to flows in individual arteriolar vessels, which are described explicitly using Poiseuille's law. The venular drainage is represented as a spatially uniform flow sink. The resulting discrete-continuum framework is parameterized using structural data from the capillary network and compared with a fully discrete flow and pressure solution in three networks derived from observations of the rat mesentery. The discrete-continuum approach is feasible and effective, providing a promising tool for extracting functional transport properties in situations where vascular branching structures are well defined.
Collapse
Affiliation(s)
- Rebecca J Shipley
- Biomechanical Engineering Group, Department of Mechanical Engineering, University College London, Torrington Place, London, UK
| | - Amy F Smith
- Institut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS, Toulouse, France
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - Paul W Sweeney
- Biomechanical Engineering Group, Department of Mechanical Engineering, University College London, Torrington Place, London, UK
| | - Axel R Pries
- Department of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Ebo DG, Clarke RC, Mertes PM, Platt PR, Sabato V, Sadleir PH. Molecular mechanisms and pathophysiology of perioperative hypersensitivity and anaphylaxis: a narrative review. Br J Anaesth 2019; 123:e38-e49. [DOI: 10.1016/j.bja.2019.01.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/25/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
|
3
|
Kuda Y, Tanida M, Chen F, Kurata Y, Shibamoto T. Anaphylaxis stimulates afferent vagal nerve activity and efferent sympathetic nerve activity in the stomach of anesthetized rats. Am J Physiol Regul Integr Comp Physiol 2019; 317:R337-R345. [PMID: 31116019 DOI: 10.1152/ajpregu.00193.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic anaphylaxis is a life-threatening and allergic reaction that affects various organs. We previously reported that, in the stomach, gastric vasoconstriction occurring at the late phase (15-55 min after injection of ovalbumin antigen) was observed in anesthetized rats sensitized with ovalbumin. In addition, anaphylaxis enhances gastric motility and delays emptying. However, the role of extrinsic autonomic nervous system on antigen-induced gastric alterations was not known. Thus, using the same rat anaphylaxis model, we aimed to determine the changes in the efferent and afferent autonomic nerve activities in the stomach during anaphylactic hypotension. The findings showed that injection of ovalbumin antigen caused substantial systemic hypotension in all sensitized rats. The efferent gastric sympathetic nerve activity (ef-GSNA), but not the efferent vagal nerve activity, increased only at the early phase (1-10 min after injection of ovalbumin antigen) and showed baroreceptor reflex, as evidenced by a stimulatory response to sodium nitroprusside-induced hypotension. In general, excitation of ef-GSNA could induce pylorus sphincter contraction and gastric vasoconstriction. In the present study, we found that sympathectomy attenuated the anaphylaxis-induced decrease in gastric flux but not the increase in gastric vascular resistance. Thus, the increase in ef-GSNA may cause anaphylactic pylorus sphincter contraction but not anaphylactic gastric vasoconstriction. On the other hand, the afferent gastric vagal nerve activity, but not the afferent sympathetic nerve activity, increased during the early phase of anaphylactic hypotension. However, vagotomy produced no effects on the anaphylactic gastric dysfunction. In conclusion, the gastric sympathetic nerves partly modulate stomach function during systemic anaphylaxis.
Collapse
Affiliation(s)
- Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Ishikawa, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Ishikawa, Japan
| | - Fu Chen
- Department of Physiology II, Kanazawa Medical University, Ishikawa, Japan.,Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Ishikawa, Japan
| | | |
Collapse
|
4
|
Yang W, Shibamoto T, Kuda Y, Zhang T, Tanida M, Kurata Y. β₂-Adrenoceptor Blockade Deteriorates Systemic Anaphylaxis by Enhancing Hyperpermeability in Anesthetized Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:52-61. [PMID: 29178678 PMCID: PMC5705484 DOI: 10.4168/aair.2018.10.1.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 11/20/2022]
Abstract
Purpose Patients treated with propranolol, a nonselective β-adrenoceptor antagonist, develop severe anaphylaxis, but the mechanism remains unknown. We determined effects of β1- and β2-adrenoceptor antagonists on the anaphylaxis-induced increase in vascular permeability in mice. Methods In anesthetized ovalbumin-sensitized C57BL mice, mean arterial blood pressure (MBP) was measured, and Evans blue dye extravasation and hematocrit (Hct) were assessed at 20 minutes after antigen injection. The following pretreatment groups (n=7/group) were studied: (1) sensitized control (non-pretreatment), (2) propranolol, (3) the selective β2-adrenoceptor antagonist ICI 118,551, (4) the selective β1-adrenoceptor antagonist atenolol, (5) adrenalectomy, (6) the selective β2-adrenoceptor agonist terbutaline, and (7) non-sensitized groups. Results The antigen injection decreased MBP, and increased Hct and vascular permeability in the kidney, lung, mesentery, and intestine, but not in the liver or spleen. Pretreatment with ICI 118,551, propranolol and adrenalectomy, but not atenolol, reduced the survival rate and augmented the increases in Hct and vascular permeability in the kidney, intestine, and lung as compared with the sensitized control group. Pretreatment with terbutaline abolished the antigen-induced alterations. Plasma epinephrine levels were increased significantly in the sensitize control mice. Conclusions Blockade of β2-adrenoceptor can deteriorate systemic anaphylaxis by augmenting hyperpermeability-induced increase in plasma extravasation by inhibiting beneficial effects of epinephrine released from the adrenal glands in anesthetized mice.
Collapse
Affiliation(s)
- Wei Yang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan.,Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Tao Zhang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan.,Department of Colorectal and Hernia Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
5
|
Morohashi T, Itakura S, Shimokawa KI, Ishii F, Ikeda T, Kazama T. The Effectiveness and Stability of a 20% Emulsified Sevoflurane Formulation for Intravenous Use in Rats. Anesth Analg 2015; 122:712-718. [PMID: 26716717 DOI: 10.1213/ane.0000000000001070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Halogenated volatile anesthetics can be safely and rapidly administered to animals and humans using emulsion formulations. However, they must be administered simultaneously with a high dose of lipids. Increasing the concentration of volatile anesthetics may solve this clinical issue. Moreover, careful observation is needed when the emulsion is injected because anaphylactic reactions have been reported. METHODS We prepared a 20% sevoflurane lipid emulsion and administered it to 69 male Sprague-Dawley rats via the tail vein. The median effective dose (ED50) for the loss of righting reflex and the median lethal dose (LD50) were determined. ED50 and LD50 values were calculated using nonlinear regression, and data were fitted with a cumulative Gaussian model using GraphPad Prism. Measurements of vital signs and evaluation of the presence of adverse effects associated with continuous infusion of emulsions were verified. Stability of the emulsion was assessed by measuring particle size at 365 days and sevoflurane concentrations after opening the vial at 180 minutes. RESULTS The ED50 and LD50 were 0.47 mL/kg (95% confidence interval [CI], 0.46-0.48) and 1.13 mL/kg (95% CI, 1.07-1.18), respectively. The therapeutic index (LD50/ED50) was 2.41 (95 CI%, 2.23-2.59), which compares favorably with therapeutic index of a fluoropolymer-based emulsion of sevoflurane, propofol, and thiopental. There were no adverse effects associated with the continuous infusion of emulsions. Particle size of the emulsion at 365 days after preparation was 78.9 ± 3.8 nm (±SD), and sevoflurane concentration at 180 minutes after opening the vial was 19.0% ± 0.6% (±SD). CONCLUSIONS We prepared a 20% sevoflurane lipid emulsion using caprylic triglyceride (i.e., medium-chain triglyceride). In rats, this emulsion was an effective anesthetic and was not associated with adverse events. The emulsion was stable after consecutive evaluation for 365 days and for 180 minutes after the vial was opened.
Collapse
Affiliation(s)
- Toru Morohashi
- From the Department of Anesthesiology, National Defense Medical College, Tokorozawa, Japan; and Department of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Boback SM, McCann KJ, Wood KA, McNeal PM, Blankenship EL, Zwemer CF. Snake constriction rapidly induces circulatory arrest in rats. J Exp Biol 2015. [DOI: 10.1242/jeb.121384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
As legless predators, snakes are unique in their ability to immobilize and kill their prey through the process of constriction, and yet how this pressure incapacitates and ultimately kills the prey remains unknown. In this study, we examined the cardiovascular function of anesthetized rats before, during and after being constricted by boas (Boa constrictor) to examine the effect of constriction on the prey's circulatory function. The results demonstrate that within 6 s of being constricted, peripheral arterial blood pressure (PBP) at the femoral artery dropped to 1/2 of baseline values while central venous pressure (CVP) increased 6-fold from baseline during the same time. Electrocardiographic recordings from the anesthetized rat's heart revealed profound bradycardia as heart rate (fH) dropped to nearly half of baseline within 60 s of being constricted, and QRS duration nearly doubled over the same time period. By the end of constriction (mean 6.5±1 min), rat PBP dropped 2.9-fold, fH dropped 3.9-fold, systemic perfusion pressure (SPP=PBP−CVP) dropped 5.7-fold, and 91% of rats (10 of 11) had evidence of cardiac electrical dysfunction. Blood drawn immediately after constriction revealed that, relative to baseline, rats were hyperkalemic (serum potassium levels nearly doubled) and acidotic (blood pH dropped from 7.4 to 7.0). These results are the first to document the physiological response of prey to constriction and support the hypothesis that snake constriction induces rapid prey death due to circulatory arrest.
Collapse
Affiliation(s)
- Scott M. Boback
- Dickinson College, Department of Biology, Carlisle, PA 17013, USA
| | | | - Kevin A. Wood
- Dickinson College, Department of Biology, Carlisle, PA 17013, USA
| | | | | | | |
Collapse
|
7
|
Xie C, Wei W, Zhang T, Dirsch O, Dahmen U. Monitoring of systemic and hepatic hemodynamic parameters in mice. J Vis Exp 2014:e51955. [PMID: 25350047 PMCID: PMC4692415 DOI: 10.3791/51955] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The use of mouse models in experimental research is of enormous importance for the study of hepatic physiology and pathophysiological disturbances. However, due to the small size of the mouse, technical details of the intraoperative monitoring procedure suitable for the mouse were rarely described. Previously we have reported a monitoring procedure to obtain hemodynamic parameters for rats. Now, we adapted the procedure to acquire systemic and hepatic hemodynamic parameters in mice, a species ten-fold smaller than rats. This film demonstrates the instrumentation of the animals as well as the data acquisition process needed to assess systemic and hepatic hemodynamics in mice. Vital parameters, including body temperature, respiratory rate and heart rate were recorded throughout the whole procedure. Systemic hemodynamic parameters consist of carotid artery pressure (CAP) and central venous pressure (CVP). Hepatic perfusion parameters include portal vein pressure (PVP), portal flow rate as well as the flow rate of the common hepatic artery (table 1). Instrumentation and data acquisition to record the normal values was completed within 1.5 h. Systemic and hepatic hemodynamic parameters remained within normal ranges during this procedure. This procedure is challenging but feasible. We have already applied this procedure to assess hepatic hemodynamics in normal mice as well as during 70% partial hepatectomy and in liver lobe clamping experiments. Mean PVP after resection (n= 20), was 11.41 ± 2.94 cmH2O which was significantly higher (P<0.05) than before resection (6.87 ± 2.39 cmH2O). The results of liver lobe clamping experiment indicated that this monitoring procedure is sensitive and suitable for detecting small changes in portal pressure and portal flow rate. In conclusion, this procedure is reliable in the hands of an experienced micro-surgeon but should be limited to experiments where mice are absolutely needed.
Collapse
Affiliation(s)
- Chichi Xie
- Department of General, Visceral and Vascular Surgery, Jena University Hospital; Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University
| | - Weiwei Wei
- Department of General, Visceral and Vascular Surgery, Jena University Hospital
| | - Tao Zhang
- Department of General, Visceral and Vascular Surgery, Jena University Hospital
| | - Olaf Dirsch
- Institute of Pathology, Jena University Hospital
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital;
| |
Collapse
|
8
|
Wang M, Shibamoto T, Tanida M, Kuda Y, Kurata Y. Mouse anaphylactic shock is caused by reduced cardiac output, but not by systemic vasodilatation or pulmonary vasoconstriction, via PAF and histamine. Life Sci 2014; 116:98-105. [PMID: 25252221 DOI: 10.1016/j.lfs.2014.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/27/2014] [Accepted: 09/11/2014] [Indexed: 01/31/2023]
Abstract
AIMS Systemic anaphylaxis is life-threatening, and its pathophysiology is not fully clarified. Mice are frequently used for experimental study on anaphylaxis. However, the hemodynamic features and mechanisms of mouse anaphylactic hypotension remain unknown. Therefore, we determined mechanisms of systemic and pulmonary vascular response to anaphylactic hypotension in anesthetized BALB/c mice by using receptor antagonists of chemical mediators. MAIN METHODS Anaphylaxis was actively induced by an intravenous injection of the ovalbumin antigen into open-chest artificially ventilated sensitized mice. Mean arterial pressure (MAP), pulmonary arterial pressure (PAP), left atrial pressure, central venous pressure, and aortic blood flow (ABF) were continuously measured. KEY FINDINGS In sensitized control mice, MAP and ABF showed initial, transient increases, followed by progressive decreases after the antigen injection. Total peripheral resistance (TPR) did not decrease, while PAP initially and transiently increased to 18.5±0.5mmHg and pulmonary vascular resistance (PVR) also significantly increased. The antigen-induced decreases in MAP and ABF were attenuated by pretreatment with either a platelet-activating factor (PAF) receptor antagonist, CV6209, or a histamine H1 receptor antagonist, diphenhydramine, and were abolished by their combination. Diphenhydramine augmented the initial increases in PAP and PVR, but did not affect the decrease of the corresponding MAP fall. The antagonists of either leukotriene C4 or serotonin, alone or in combination with CV6209, exerted no significant effects. SIGNIFICANCE Mouse anaphylactic hypotension is caused by a decrease in cardiac output but not vasodilatation, via actions of PAF and histamine. The slight increase in PAP is not involved in mouse anaphylactic hypotension.
Collapse
Affiliation(s)
- Mofei Wang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; Department of Colorectal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Toshishige Shibamoto
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
9
|
Wang M, Tanida M, Shibamoto T, Kurata Y. Alpha-adrenoceptor antagonists and chemical sympathectomy exacerbate anaphylaxis-induced hypotension, but not portal hypertension, in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R900-7. [PMID: 23948775 DOI: 10.1152/ajpregu.00120.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anaphylactic shock is sometimes life-threatening, and it is accompanied by hepatic venoconstriction in animals, which, in part, accounts for anaphylactic hypotension. Roles of norepinephrine and α-adrenoceptor in anaphylaxis-induced hypotension and portal hypertension were investigated in anesthetized ovalbumin-sensitized Sprague-Dawley rats. The sensitized rats were randomly allocated to the following pretreatment groups (n = 6/group): 1) control (nonpretreatment), 2) α1-adrenoceptor antagonist prazosin, 3) nonselective α-adrenoceptor antagonist phentolamine, 4) 6-hydroxydopamine-induced chemical sympathectomy, and 5) surgical hepatic sympathectomy. Anaphylactic shock was induced by an intravenous injection of the antigen. The systemic arterial pressure (SAP), central venous pressure (CVP), portal venous pressure (PVP), and portal venous blood flow (PBF) were measured, and splanchnic [Rspl: (SAP-PVP)/PBF] and portal venous [Rpv: (PVP-CVP)/PBF] resistances were determined. Separately, we measured efferent hepatic sympathetic nerve activity during anaphylaxis. In the control group, SAP markedly decreased, followed by a gradual recovery toward baseline. PVP and Rpv increased 3.2- and 23.3-fold, respectively, after antigen. Rspl decreased immediately, but only transiently, after antigen, and then increased 1.5-fold later than 10 min. The α-adrenoceptor antagonist pretreatment or chemical sympathectomy inhibited the late increase in Rspl and the SAP recovery. Pretreatment with α-adrenoceptor antagonists, or either chemical or surgical hepatic sympathectomy, did not affect the antigen-induced increase in Rpv. Hepatic sympathetic nerve activity did not significantly change after antigen. In conclusion, α-adrenoceptor antagonists and chemical sympathectomy exacerbate anaphylaxis-induced hypotension, but not portal hypertension, in anesthetized rats. Hepatic sympathetic nerves are not involved in anaphylactic portal hypertension.
Collapse
Affiliation(s)
- Mofei Wang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan; and
| | | | | | | |
Collapse
|
10
|
|
11
|
Debbaut C, De Wilde D, Casteleyn C, Cornillie P, Van Loo D, Van Hoorebeke L, Monbaliu D, Fan YD, Segers P. Modeling the Impact of Partial Hepatectomy on the Hepatic Hemodynamics Using a Rat Model. IEEE Trans Biomed Eng 2012; 59:3293-3303. [DOI: 10.1109/tbme.2012.2199108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
12
|
Anaphylactic Shock Decreases Cerebral Blood Flow More Than What Would Be Expected From Severe Arterial Hypotension. Shock 2012; 38:429-35. [DOI: 10.1097/shk.0b013e3182690897] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zhang W, Shibamoto T, Kuda Y, Kurata Y, Shinomiya S, Kida M, Tsuchida H. Vascular perfusion limits mesenteric lymph flow during anaphylactic hypotension in rats. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1191-6. [DOI: 10.1152/ajpregu.00695.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To determine fluid extravasation in the splanchnic vascular bed during anaphylactic hypotension, the mesenteric lymph flow (Qlym) was measured in anesthetized rats sensitized with ovalbumin, along with the systemic arterial pressure (Psa) and portal venous pressure (Ppv). When the antigen was injected into the sensitized rats ( n = 10), Psa decreased from 125 ± 4 to 37 ± 2 mmHg at 10 min with a gradual recovery, whereas Ppv increased by 16 mmHg at 2 min and returned to the baseline at 10 min. Qlym increased 3.3-fold from the baseline of 0.023 ± 0.002 g/min to the peak levels of 0.075 ± 0.009 g/min at 2 min and returned to the baseline within 12 min. The lymph protein concentrations increased after antigen, a finding indicating increased vascular permeability. To determine the role of the Ppv increase in the antigen-induced increase in Qlym, Ppv of the nonsensitized rats ( n = 10) was mechanically elevated in a manner similar to that of the sensitized rats by compressing the portal vein near the hepatic hilus. Unexpectedly, Ppv elevation alone produced a similar increase in Qlym, with the peak comparable to that of the sensitized rats. This finding aroused a question why the antigen-induced increase in Qlym was limited despite the presence of increased vascular permeability. Thus the changes in splanchnic vascular surface area were assessed by measuring the mesenteric arterial flow. The mesenteric arterial flow was decreased much more in the sensitized rats (75%; n = 5) than the nonsensitized Ppv elevated rats (50%; n = 5). In conclusion, mesenteric lymph flow increases transiently after antigen presumably due to increased capillary pressure of the splanchnic vascular bed via downstream Ppv elevation and perfusion and increased vascular permeability in anesthetized rats. However, this increased extravasation is subsequently limited by decreases in vascular surface area and filtration pressure.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Physiology II,
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | | | | | | | | | - Masahiro Kida
- Anesthesiology, Kanazawa Medical University, Uchinada, Japan; and
| | - Hideaki Tsuchida
- Anesthesiology, Kanazawa Medical University, Uchinada, Japan; and
| |
Collapse
|
14
|
Kamikado C, Shibamoto T, Zhang W, Kuda Y, Ohmukai C, Kurata Y. Portacaval shunting attenuates portal hypertension and systemic hypotension in rat anaphylactic shock. J Physiol Sci 2011; 61:161-6. [PMID: 21181324 PMCID: PMC10717408 DOI: 10.1007/s12576-010-0123-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/18/2010] [Indexed: 11/30/2022]
Abstract
Anaphylactic shock in rats is characterized by antigen-induced hepatic venoconstriction and the resultant portal hypertension. We determined the role of portal hypertension in anaphylactic hypotension by using the side-to-side portacaval shunt- and sham-operated rats sensitized with ovalbumin (1 mg). We measured the mean arterial blood pressure (MAP), portal venous pressure (PVP), and central venous pressure (CVP) under pentobarbital anesthesia and spontaneous breathing. Anaphylactic hypotension was induced by an intravenous injection of ovalbumin (0.6 mg). In sham rats, the antigen caused not only an increase in PVP from 11.3 cmH(2)O to the peak of 27.9 cmH(2)O but also a decrease in MAP from 103 mmHg to the lowest value of 41 mmHg. CVP also decreased significantly after the antigen. In the portacaval shunt rats, in response to the antigen, PVP increased slightly, but significantly, to the peak of 17.5 cmH(2)O, CVP did not decrease, and MAP decreased to a lesser degree with the lowest value being 60 mmHg. These results suggest that the portacaval shunt attenuated anaphylactic portal hypertension and venous return decrease, partially preventing anaphylactic hypotension. In conclusion, portal hypertension is involved in rat anaphylactic hypotension presumably via splanchnic congestion resulting in decreased venous return and thus systemic arterial hypotension.
Collapse
Affiliation(s)
- Chiaki Kamikado
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| | - Toshishige Shibamoto
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| | - Wei Zhang
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
- Department of Pathophysiology, Medical College of Qinghai University, Xining, 810001 China
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| | - Chieko Ohmukai
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| |
Collapse
|
15
|
Huang H, Deng M, Jin H, Dirsch O, Dahmen U. Intraoperative vital and haemodynamic monitoring using an integrated multiple-channel monitor in rats. Lab Anim 2010; 44:254-63. [DOI: 10.1258/la.2009.009055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study is to give a hands-on description of the successful monitoring procedure established for extended liver resections and liver transplantations in rats and to provide the typical range of data as obtained before and after a hepatobiliary surgical procedure (right median hepatic vein [RMHV] ligation) in healthy male Lewis rats. All manipulations were performed in anaesthetized (3% isoflurane in O2 1 L/min) healthy male Lewis rats (250–350 g) with an integrated multiple-channel intraoperative monitor (Powerlab® system) using a series of sensors for data acquisition. Vital parameters (body temperature, electrocardiogram, respiratory rate and heart rate), haemodynamic parameters (mean arterial blood pressure [MAP] and central venous pressure) and liver perfusion parameters (inferior hepatic venous pressure, portal vein pressure [PVP], blood flow of portal vein and inferior hepatic cava) were monitored. Catheters were placed in microsurgical technique after careful exposure guided by anatomical landmarks. Vascular incisions were closed with interrupted sutures. Complete instrumentation of animals was performed within 1 h. No specific complications occurred. Vital and haemodynamic parameters such as MAP (94 ± 16.2 mmHg) or portal pressure (9.6 ± 1.34 mmHg) were in the same range as known for humans (MAP = 100 mmHg, portal pressure = 5–10 mmHg), whereas parameters dependent on the size of the body or organ such as flow rates (portal blood flow = 16.2 ± 6 mL/min) were obviously different compared with those of humans (portal blood flow = 800 mL/min). In conclusion, the normal range for vital, haemodynamic and liver perfusion parameters was reported as reference values to allow quality control for future surgical hepatobiliary research projects. As the procedure can be easily learned, the extensive intraoperative monitoring can be used routinely.
Collapse
Affiliation(s)
- Hai Huang
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Meihong Deng
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Hao Jin
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Olaf Dirsch
- Division of Pathology, German Heart Institute Berlin, Berlin, Germany
| | - Uta Dahmen
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
16
|
Cui S, Shibamoto T, Zhang W, Kurata Y, Kashimura O, Miyamae S. Exercise training attenuates anaphylactic venoconstriction in rat perfused liver, but does not affect anaphylactic hypotension in conscious rats. Clin Exp Pharmacol Physiol 2010; 37:889-93. [DOI: 10.1111/j.1440-1681.2010.05401.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
WHAT'S NEW IN SHOCK, JUNE 2008? Shock 2008; 29:653-5. [DOI: 10.1097/shk.0b013e318172f54b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|