1
|
Song R, Wu Z, Ma J, Yin S, Liu C, Sun R, Cao G, Lu Y, Chen A, Zhang G, Liu J, Wang Y. Research status and hot topics of the effects of skin innervation on wound healing from 1959 to 2022: A bibliometric analysis. Front Surg 2022; 9:966375. [PMID: 36303853 PMCID: PMC9592856 DOI: 10.3389/fsurg.2022.966375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Background Skin innervation plays an important role in wound healing by either direct contact with or indirect secretions that impact skin cells. Many studies in this field have been published; however, there is a lack of bibliometric analyses focusing on the effect of skin innervation on skin wound healing. In this study, we aimed to analyse the research trends, status, and hotspots in this field. Methods Reviews and articles published in English were extracted from the Web of Science Core Collection (WoSCC) database based on subject term searches. Microsoft Office Excel, VOSviewer, and CiteSpace were used to analyse publication date, country or region, institution, author, and author keywords. Results A total of 368 papers published between 1959 and 2022 were included in the analysis. Although there was a pulsation during this period, there was an overall upward trend in studies related to the effect of skin innervation on wound healing. The United States, particularly the University of Washington, and Gibran, Nicole S. from the University of Washington, was the most active in this field. Wound Repair and Regeneration published the most relevant literature, and “Calcitonin gene-related peptide: physiology and pathophysiology” had the highest total number of citations. “Diabetic foot ulcer,” “epidermal stem cells,” “mesenchymal stem cells,” and “mast cells” are current and potential future research hotspots. Conclusion This bibliometric analysis will inform the overall trends in research related to the effect of skin innervation on wound healing, summarise relevant research hotspots, and guide future work.
Collapse
Affiliation(s)
- Ru Song
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhenjie Wu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiaxu Ma
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Siyuan Yin
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Rui Sun
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guoqi Cao
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yongpan Lu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Aoyu Chen
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guang Zhang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jian Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yibing Wang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University / Shandong Provincial Qianfoshan Hospital, Jinan, China,Correspondence: Yibing Wang
| |
Collapse
|
3
|
Zhu FB, Fang XJ, Liu DW, Shao Y, Zhang HY, Peng Y, Zhong QL, Li YT, Liu DM. Substance P combined with epidermal stem cells promotes wound healing and nerve regeneration in diabetes mellitus. Neural Regen Res 2016; 11:493-501. [PMID: 27127492 PMCID: PMC4829018 DOI: 10.4103/1673-5374.179073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Exogenous substance P accelerates wound healing in diabetes, but the mechanism remains poorly understood. Here, we established a rat model by intraperitoneally injecting streptozotocin. Four wounds (1.8 cm diameter) were drilled using a self-made punch onto the back, bilateral to the vertebral column, and then treated using amniotic membrane with epidermal stem cells and/or substance P around and in the middle of the wounds. With the combined treatment the wound-healing rate was 100% at 14 days. With prolonged time, type I collagen content gradually increased, yet type III collagen content gradually diminished. Abundant protein gene product 9.5- and substance P-immunoreactive nerve fibers regenerated. Partial nerve fiber endings extended to the epidermis. The therapeutic effects of combined substance P and epidermal stem cells were better than with amniotic membrane and either factor alone. Our results suggest that the combination of substance P and epidermal stem cells effectively contributes to nerve regeneration and wound healing in diabetic rats.
Collapse
Affiliation(s)
- Fei-Bin Zhu
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Department of Burns, Huizhou Central People's Hospital, Huizhou, Guangdong Province, China
| | - Xiang-Jing Fang
- Department of Burns, Huizhou Central People's Hospital, Huizhou, Guangdong Province, China
| | - De-Wu Liu
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ying Shao
- Department of Burns, Huizhou Central People's Hospital, Huizhou, Guangdong Province, China
| | - Hong-Yan Zhang
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yan Peng
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing-Ling Zhong
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yong-Tie Li
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - De-Ming Liu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
4
|
Muffley LA, Pan SC, Smith AN, Ga M, Hocking AM, Gibran NS. Differentiation state determines neural effects on microvascular endothelial cells. Exp Cell Res 2012; 318:2085-93. [PMID: 22683922 DOI: 10.1016/j.yexcr.2012.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/17/2012] [Accepted: 06/01/2012] [Indexed: 12/25/2022]
Abstract
Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells.
Collapse
Affiliation(s)
- Lara A Muffley
- University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Lewis KM, Harford-Wright E, Vink R, Nimmo AJ, Ghabriel MN. Walker 256 tumour cells increase substance P immunoreactivity locally and modify the properties of the blood-brain barrier during extravasation and brain invasion. Clin Exp Metastasis 2012; 30:1-12. [PMID: 22610781 DOI: 10.1007/s10585-012-9487-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/08/2012] [Indexed: 01/15/2023]
Abstract
It is not yet known how tumour cells traverse the blood-brain barrier (BBB) to form brain metastases. Substance P (SP) release is a key component of neurogenic inflammation which has been recently shown to increase the permeability of the BBB following CNS insults, making it a possible candidate as a mediator of tumour cell extravasation into the brain. This study investigated the properties of the BBB in the early stages of tumour cell invasion into the brain, and the possible involvement of SP. Male Wistar rats were injected with Walker 256 breast carcinoma cells via the internal carotid artery and euthanised at 1, 3, 6 and 9 days post tumour inoculation. Culture medium-injected animals served as controls at 1 and 9 days. Evidence of tumour cell extravasation across the BBB was first observed at 3 days post-inoculation, which corresponded with significantly increased albumin (p < 0.05) and SP immunoreactivity (p < 0.01) and significantly reduced endothelial barrier antigen labelling of microvessels when compared to culture medium control animals (p < 0.001). By day 9 after tumour cell inoculation, 100 % of animals developed large intracranial neoplasms that had significantly increased albumin in the peri-tumoral area (p < 0.001). The increased SP immunoreactivity and altered BBB properties at 3 days post-inoculation that coincided with early tumour invasion may be indicative of a mechanism for tumour cell extravasation into the brain. Thus, extravasation of tumour cells into the brain to form cerebral metastases may be a SP-mediated process.
Collapse
Affiliation(s)
- Kate M Lewis
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | | | |
Collapse
|