1
|
Myoglobin and troponin concentrations are increased in early stage deep tissue injury. J Mech Behav Biomed Mater 2019; 92:50-57. [DOI: 10.1016/j.jmbbm.2018.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
|
2
|
Zacharski LR, Shamayeva G, Chow BK. Iron reduction response and demographic differences between diabetics and non-diabetics with cardiovascular disease entered into a controlled clinical trial. Metallomics 2018; 10:264-277. [DOI: 10.1039/c7mt00282c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Filings of elemental iron separated magnetically from a homogenate of breakfast cereal implicated in the risk of cardiovascular disease and diabetes.
Collapse
Affiliation(s)
- Leo R. Zacharski
- Veterans Affairs New England Health Care System
- Research Service (151)
- VA Medical Center
- White River Jct
- USA
| | - Galina Shamayeva
- Veterans Affairs Cooperative Studies Program Coordinating Center
- Veterans Affairs Palo Alto Health Care System
- Palo Alto
- USA
| | - Bruce K. Chow
- Veterans Affairs Cooperative Studies Program Coordinating Center
- Veterans Affairs Palo Alto Health Care System
- Palo Alto
- USA
| |
Collapse
|
3
|
Varga T, Mounier R, Horvath A, Cuvellier S, Dumont F, Poliska S, Ardjoune H, Juban G, Nagy L, Chazaud B. Highly Dynamic Transcriptional Signature of Distinct Macrophage Subsets during Sterile Inflammation, Resolution, and Tissue Repair. THE JOURNAL OF IMMUNOLOGY 2016; 196:4771-82. [PMID: 27183604 DOI: 10.4049/jimmunol.1502490] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/29/2016] [Indexed: 11/19/2022]
Abstract
Macrophage gene expression determines phagocyte responses and effector functions. Macrophage plasticity has been mainly addressed in in vitro models that do not account for the environmental complexity observed in vivo. In this study, we show that microarray gene expression profiling revealed a highly dynamic landscape of transcriptomic changes of Ly6C(pos)CX3CR1(lo) and Ly6C(neg)CX3CR1(hi) macrophage populations during skeletal muscle regeneration after a sterile damage. Systematic gene expression analysis revealed that the time elapsed, much more than Ly6C status, was correlated with the largest differential gene expression, indicating that the time course of inflammation was the predominant driving force of macrophage gene expression. Moreover, Ly6C(pos)/Ly6C(neg) subsets could not have been aligned to canonical M1/M2 profiles. Instead, a combination of analyses suggested the existence of four main features of muscle-derived macrophages specifying important steps of regeneration: 1) infiltrating Ly6C(pos) macrophages expressed acute-phase proteins and exhibited an inflammatory profile independent of IFN-γ, making them damage-associated macrophages; 2) metabolic changes of macrophages, characterized by a decreased glycolysis and an increased tricarboxylic acid cycle/oxidative pathway, preceded the switch to and sustained their anti-inflammatory profile; 3) Ly6C(neg) macrophages, originating from skewed Ly6C(pos) cells, actively proliferated; and 4) later on, restorative Ly6C(neg) macrophages were characterized by a novel profile, indicative of secretion of molecules involved in intercellular communications, notably matrix-related molecules. These results show the highly dynamic nature of the macrophage response at the molecular level after an acute tissue injury and subsequent repair, and associate a specific signature of macrophages to predictive specialized functions of macrophages at each step of tissue injury/repair.
Collapse
Affiliation(s)
- Tamas Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; CNRS UMR 5510, 69100 Villeurbanne, France; INSERM U1217, 69100 Villeurbanne, France
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sylvain Cuvellier
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Florent Dumont
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; Bioinformatics Core Facility, University of Debrecen, 4032 Debrecen, Hungary
| | - Hamida Ardjoune
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; CNRS UMR 5510, 69100 Villeurbanne, France; INSERM U1217, 69100 Villeurbanne, France
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827; and Hungarian Academy of Sciences - Debrecen "Lendulet" Immunogenomics Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; CNRS UMR 5510, 69100 Villeurbanne, France; INSERM U1217, 69100 Villeurbanne, France; INSERM U1016, Institut Cochin, 75014 Paris, France;
| |
Collapse
|
4
|
Aktimur R, Gokakin AK, Deveci K, Atabey M, Topcu O. Oxidative stress markers in laparoscopic vs. open appendectomy for acute appendicitis: A double-blind randomized study. J Minim Access Surg 2016; 12:143-7. [PMID: 27073307 PMCID: PMC4810948 DOI: 10.4103/0972-9941.156203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress is a complicated process, which was defined as an increase in prooxidants and decrease in antioxidants caused by various mechanisms, including inflammation and surgical trauma. The association between acute appendicitis and oxidative stress has been showed in previous studies. However, comparison of oxidative stress in laparoscopic or open appendectomy (OA) has not been established. PATIENTS AND METHODS Patients who were diagnosed as acute appendicitis between October 2012 and January 2013 were randomized to open (OA, n = 50) and laparoscopic appendectomy (LA, n = 50). Blood samples for oxidative stress markers (total oxidant status [TOS] and total antioxidant status [TAS]), C-reactive protein (CRP) and white blood cells (WBC's) were collected just before the surgery and 24 h after surgery. RESULTS There were no differences in preoperative values of WBC and CRP between LA and OA groups (P = 0.523 and 0.424), however, in postoperative 24(th) h, CRP was reduced in LA group (P = 0.031). There were no differences in preoperative levels of TOS, TAS, and oxidative stress index (OSI) between LA and OA groups. In the postoperative 24(th) h, TOS and OSI were found to be significantly higher in OA group when compared to LA group (P = 0.017 and 0.002) whereas no difference was detected in TAS level in the postoperative 24(th) h (P = 0.172). CONCLUSIONS This double-blind, randomized clinical trial provides evidence that LA for uncomplicated appendicitis is associated with significantly lower oxidative stress compared with OA. Some of the advantages of LA may be attributed to the significant reduction of oxidative stress in these patients.
Collapse
Affiliation(s)
- Recep Aktimur
- Department of General Surgery, Samsun Training and Research Hospital, Samsun, Turkey
| | - Ali Kagan Gokakin
- Department of General Surgery, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Koksal Deveci
- Department of Biochemistry, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Mustafa Atabey
- Department of General Surgery, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Omer Topcu
- Department of General Surgery, Cumhuriyet University, School of Medicine, Sivas, Turkey
| |
Collapse
|
5
|
Cobley JN, McHardy H, Morton JP, Nikolaidis MG, Close GL. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations. Free Radic Biol Med 2015; 84:65-76. [PMID: 25841784 DOI: 10.1016/j.freeradbiomed.2015.03.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
Abstract
The exogenous antioxidants vitamin C (ascorbate) and vitamin E (α-tocopherol) often blunt favorable cell signaling responses to exercise, suggesting that redox signaling contributes to exercise adaptations. Current theories posit that this antioxidant paradigm interferes with redox signaling by attenuating exercise-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. The well-documented in vitro antioxidant actions of ascorbate and α-tocopherol and characterization of the type and source of the ROS/RNS produced during exercise theoretically enable identification of redox-dependent mechanisms responsible for the blunting of favorable cell signaling responses to exercise. This review aimed to apply this reasoning to determine how the aforementioned antioxidants might attenuate exercise-induced ROS/RNS production. The principal outcomes of this analysis are (1) neither antioxidant is likely to attenuate nitric oxide signaling either directly (reaction with nitric oxide) or indirectly (reaction with derivatives, e.g., peroxynitrite); (2) neither antioxidant reacts appreciably with hydrogen peroxide, a key effector of redox signaling; (3) ascorbate but not α-tocopherol has the capacity to attenuate exercise-induced superoxide generation; and (4) alternate mechanisms, namely pro-oxidant side reactions and/or reduction of bioactive oxidized macromolecule adducts, are unlikely to interfere with exercise-induced redox signaling. Out of all the possibilities considered, ascorbate-mediated suppression of superoxide generation with attendant implications for hydrogen peroxide signaling is arguably the most cogent explanation for blunting of favorable cell signaling responses to exercise. However, this mechanism is dependent on ascorbate accumulating at sites rich in NADPH oxidases, principal contributors to contraction-mediated superoxide generation, and outcompeting nitric oxide and superoxide dismutase isoforms. The major conclusions of this review are: (1) direct evidence for interference of ascorbate and α-tocopherol with exercise-induced ROS/RNS production is lacking; (2) theoretical analysis reveals that both antioxidants are unlikely to have a major impact on exercise-induced redox signaling; and (3) it is worth considering alternate redox-independent mechanisms.
Collapse
Affiliation(s)
- James N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK, DD1 1HG.
| | - Helen McHardy
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK, DD1 1HG
| | - James P Morton
- Research Institute for Sport and Eqxercise Science, Liverpool John Moores University, Liverpool, UK, L3 3AF
| | - Michalis G Nikolaidis
- School of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Graeme L Close
- Research Institute for Sport and Eqxercise Science, Liverpool John Moores University, Liverpool, UK, L3 3AF
| |
Collapse
|
6
|
Funk K, Scheerer N, Verhaegh R, Pütter C, Fandrey J, de Groot H. Severe blunt muscle trauma in rats: only marginal hypoxia in the injured area. PLoS One 2014; 9:e111151. [PMID: 25360779 PMCID: PMC4215885 DOI: 10.1371/journal.pone.0111151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background After severe muscle trauma, hypoxia due to microvascular perfusion failure is generally believed to further increase local injury and to impair healing. However, detailed analysis of hypoxia at the cellular level is missing. Therefore, in the present work, spectroscopic measurements of microvascular blood flow and O2 supply were combined with immunological detection of hypoxic cells to estimate O2 conditions within the injured muscle area. Materials and Methods Severe blunt muscle trauma was induced in the right Musculus gastrocnemius of male Wistar rats by a standardized “weight-drop” device. Microvascular blood flow, relative hemoglobin amount, and hemoglobin O2 saturation were determined by laser Doppler and white-light spectroscopy. Hypoxic cells were detected by histologic evaluation of covalent binding of pimonidazole and expression of HIF-1α. Results Directly after trauma and until the end of experiment (480 minutes), microvascular blood flow and relative hemoglobin amount were clearly increased. In contrast to blood flow and relative hemoglobin amount, there was no immediate but a delayed increase of microvascular hemoglobin O2 saturation. Pimonidazole immunostaining revealed a hypoxic fraction (percentage area of pimonidazole-labelled muscle cells within the injured area) between 8 to 3%. There was almost no HIF-1α expression detectable in the muscle cells under each condition studied. Conclusions In the early phase (up to 8 hours) after severe blunt muscle trauma, the overall microvascular perfusion of the injured area and thus its O2 supply is clearly increased. This increased O2 supply is obviously sufficient to ensure normoxic (or even hyperoxic) conditions in the vast majority of the cells.
Collapse
Affiliation(s)
- Kristina Funk
- University of Duisburg-Essen, Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Nina Scheerer
- University of Duisburg-Essen, Institute of Physiology, University Hospital Essen, Essen, Germany
| | - Rabea Verhaegh
- University of Duisburg-Essen, Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Carolin Pütter
- University of Duisburg-Essen, Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Joachim Fandrey
- University of Duisburg-Essen, Institute of Physiology, University Hospital Essen, Essen, Germany
| | - Herbert de Groot
- University of Duisburg-Essen, Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
7
|
Margaritelis NV, Kyparos A, Paschalis V, Theodorou AA, Panayiotou G, Zafeiridis A, Dipla K, Nikolaidis MG, Vrabas IS. Reductive stress after exercise: The issue of redox individuality. Redox Biol 2014; 2:520-8. [PMID: 24634834 PMCID: PMC3953955 DOI: 10.1016/j.redox.2014.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 12/17/2022] Open
Abstract
Exercise has been consistently used as an oxidant stimulus in redox biology studies. However, previous studies have focused on group differences and did not examine individual differences. As a result, it remains untested whether all individuals experience oxidative stress after acute exercise. Therefore, the main aim of the present study was to investigate whether some individuals exhibit unexpected responses after an acute eccentric (i.e., muscle-damaging) exercise session. Ninety eight (N = 98) young men performed an isokinetic eccentric exercise bout with the knee extensors. Plasma, erythrocytes and urine samples were collected immediately before and 2 days post-exercise. Three commonly used redox biomarkers (F2-isoprostanes, protein carbonyls and glutathione) were assayed. As expected, the two oxidant biomarkers (F2-isoprostanes and protein carbonyls) significantly increased 2 days after exercise (46% and 61%, respectively); whereas a significant decrease in glutathione levels (by −21%) was observed after exercise. A considerable number of the participants exhibited changes in the levels of biomarkers in the opposite, unexpected direction than the group average. More specifically, 13% of the participants exhibited a decrease in F2-isoprostanes and protein carbonyls and 10% of the participants exhibited an increase in glutathione levels. Furthermore, more than 1 out of 3 individuals exhibited either unexpected or negligible (from 0% to ± 5%) responses to exercise in at least one redox biomarker. It was also observed that the initial values of redox biomarkers are important predictors of the responses to exercise. In conclusion, although exercise induces oxidative stress in the majority of individuals, it can induce reductive stress or negligible stress in a considerable number of people. The data presented herein emphasize that the mean response to a redox stimulus can be very misleading. We believe that the wide variability (including the cases of reductive stress) described is not limited to the oxidant stimulus used and the biomarkers selected. Exercise may induce reductive stress instead of the expected oxidative stress. The initial values of biomarkers are major predictors of the responses to exercise. The mean response of a group to a redox stimulus can be misleading.
Collapse
Affiliation(s)
- N V Margaritelis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - A Kyparos
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - V Paschalis
- Department of Physical Education and Sports Science, University of Thessaly, Karies, Trikala 42100, Greece ; Laboratory of Exercise, Health and Human Performance, Research Center, European University of Cyprus, Nicosia, Cyprus
| | - A A Theodorou
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece ; Laboratory of Exercise, Health and Human Performance, Research Center, European University of Cyprus, Nicosia, Cyprus
| | - G Panayiotou
- Laboratory of Exercise, Health and Human Performance, Research Center, European University of Cyprus, Nicosia, Cyprus
| | - A Zafeiridis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - K Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - M G Nikolaidis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - I S Vrabas
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| |
Collapse
|
8
|
Arsalani-Zadeh R, Ullah S, Khan S, MacFie J. Oxidative stress in laparoscopic versus open abdominal surgery: a systematic review. J Surg Res 2011; 169:e59-68. [PMID: 21492871 DOI: 10.1016/j.jss.2011.01.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/13/2010] [Accepted: 01/20/2011] [Indexed: 12/01/2022]
Abstract
BACKGROUND Any form of trauma, including surgery, is known to result in oxidative stress. Increased intra-abdominal pressure during pneumoperitoneum and inflation-deflation may cause ischemia reperfusion and, hence, oxidative stress may be greater during laparoscopic surgery. The aim of this study was to systemically review the literature to compare oxidative stress in laparoscopic and open procedures. METHODS A systematic search of the Medline, Pub Med, EMBASE, and Cochrane databases was performed with the following keywords: pneumoperitoneum AND surger $ OR laparoscop $ AND oxida $. The search was limited to articles published between 1980 and August 2010. RESULTS The initial search identified 197 papers. After review of the abstracts, 17 papers met the inclusion criteria. Six more papers were identified through the reference lists. It was not possible to perform a meta-analysis due to heterogeneity of patient data, patient selection criteria, and diversity of biomarkers used. The majority of studies demonstrated greater immediate oxidative stress after open surgery. There was, however, a paucity of studies comparing open versus laparoscopic surgery with regards to tissue oxidative stress. CONCLUSION Laparoscopic surgery seems to produce less systemic oxidative stress. However the effect of pneumoperitoneum on local oxidative stress and tissue hypoxia and its clinical significance need further investigation.
Collapse
|
9
|
ROLE OF CHELATABLE IRON VERSUS MYOGLOBIN IN OXIDATIVE STRESS AFTER CRUSH TRAUMA. Shock 2010; 33:552-3. [DOI: 10.1097/shk.0b013e3181c24fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
WHAT'S NEW IN SHOCK, MAY 2010? Shock 2010. [DOI: 10.1097/shk.0b013e3181dc3d4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|