Matějková Š, Scheuerle A, Wagner F, McCook O, Matallo J, Gröger M, Seifritz A, Stahl B, Vcelar B, Calzia E, Georgieff M, Möller P, Schelzig H, Radermacher P, Simon F. Carbamylated erythropoietin-FC fusion protein and recombinant human erythropoietin during porcine kidney ischemia/reperfusion injury.
Intensive Care Med 2013;
39:497-510. [PMID:
23291730 DOI:
10.1007/s00134-012-2766-y]
[Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 11/22/2012] [Indexed: 01/03/2023]
Abstract
PURPOSE
To test the hypothesis that a carbamylated EPO-FC fusion protein (cEPO-FC) or recombinant human erythropoietin (rhEPO) would protect against kidney ischemia/reperfusion (I/R) injury in pigs with atherosclerosis.
METHODS
Anesthetized and mechanically ventilated animals received cEPO-FC (50 μg kg(-1)), rhEPO (5,000 IU kg(-1)), or vehicle (n = 9 per group) prior to 120 min of aortic occlusion and over 4 h of reperfusion. During aortic occlusion, mean arterial pressure (MAP) was maintained at 80-120 % of baseline values by esmolol, nitroglycerin, and ATP. During reperfusion, noradrenaline was titrated to keep MAP at pre-ischemic levels. Blood creatinine and neutrophil gelatinase-associated lipocalin (NGAL) levels, creatinine clearance, fractional Na(+) excretion, and HE and PAS staining were used to assess kidney function and histological damage. Plasma interleukin-6, tumor necrosis factor-α, nitrate + nitrite and 8-isoprostane levels were measured to assess systemic inflammation, and nitrosative and oxidative stress.
RESULTS
I/R caused acute kidney injury with reduced creatinine clearance, increased fractional Na(+) excretion and NGAL levels, moderate to severe glomerular and tubular damage and apoptosis, systemic inflammation and oxidative and nitrosative stress, but there were no differences between the treatment groups. Pre-ischemia nitrate + nitrite and 8-isoprostanes levels were lower and higher, respectively, than in healthy animals of a previous study, and immune histochemistry showed higher endothelial nitric oxide synthase and lower EPO receptor expression in pre-ischemia kidney biopsies than in biopsies from healthy animals.
CONCLUSIONS
In swine with atherosclerosis, rhEPO and cEPO-FC failed to attenuate prolonged ischemia-induced kidney injury within an 8-h reperfusion period, possibly due to reduced EPO receptor expression resulting from pre-existing oxidative stress and/or reduced NO release.
Collapse