1
|
Cao Y, Redd MA, Fang C, Mizikovsky D, Li X, Macdonald PS, King GF, Palpant NJ. New Drug Targets and Preclinical Modelling Recommendations for Treating Acute Myocardial Infarction. Heart Lung Circ 2023:S1443-9506(23)00139-7. [PMID: 37230806 DOI: 10.1016/j.hlc.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/27/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide and the primary underlying risk factor for heart failure. Despite decades of research and clinical trials, there are no drugs currently available to prevent organ damage from acute ischaemic injuries of the heart. In order to address the increasing global burden of heart failure, drug, gene, and cell-based regeneration technologies are advancing into clinical testing. In this review we highlight the burden of disease associated with AMI and the therapeutic landscape based on market analyses. New studies revealing the role of acid-sensitive cardiac ion channels and other proton-gated ion channels in cardiac ischaemia are providing renewed interest in pre- and post-conditioning agents with novel mechanisms of action that may also have implications for gene- and cell-based therapeutics. Furthermore, we present guidelines that couple new cell technologies and data resources with traditional animal modelling pipelines to help de-risk drug candidates aimed at treating AMI. We propose that improved preclinical pipelines and increased investment in drug target identification for AMI is critical to stem the increasing global health burden of heart failure.
Collapse
Affiliation(s)
- Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Chen Fang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Xichun Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Peter S Macdonald
- Cardiopulmonary Transplant Unit, St Vincent's Hospital, Sydney, NSW, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia.
| |
Collapse
|
2
|
Xia P, Cao K, Hu X, Liu L, Yu D, Dong S, Du J, Xu Y, Liu B, Yang Y, Gao F, Sun X, Liu H. K ATP Channel Blocker Glibenclamide Prevents Radiation-Induced Lung Injury and Inhibits Radiation-Induced Apoptosis of Vascular Endothelial Cells by Increased Ca 2+ Influx and Subsequent PKC Activation. Radiat Res 2019; 193:171-185. [PMID: 31877256 DOI: 10.1667/rr15381.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced lung injury (RILI) is a common and severe side effect of thoracic radiotherapy, which compromises patients' quality of life. Recent studies revealed that early vascular injury, especially microvascular damage, played a central role in the development of RILI. For this reason, early vascular protection is essential for RILI therapy. The ATP-sensitive K+ (KATP) channel is an ATP-dependent K+ channel with multiple subunits. The protective role of the KATP channel in vascular injury has been demonstrated in some published studies. In this work, we investigated the effect of KATP channel on RILI. Our findings confirmed that the KATP channel blocker glibenclamide, rather than the KATP channel opener pinacidil, remitted RILI, and in particular, provided protection against radiation-induced vascular injury. Cytology experiments verified that glibenclamide enhanced cell viability, increased the potential of proliferation after irradiation and attenuated radiation-induced apoptosis. Involved mechanisms included increased Ca2+ influx and PKC activation, which were induced by glibenclamide pretreatment. In conclusion, the KATP channel blocker glibenclamide remitted RILI and inhibited the radiation-induced apoptosis of vascular endothelial cells by increased Ca2+ influx and subsequent PKC activation.
Collapse
Affiliation(s)
- Penglin Xia
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xuguang Hu
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai, P.R. China
| | - Lei Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Danyang Yu
- Ophthalmology Department of Kunming General Hospital of Chengdu Military Area Command, Kunming, Yunnan, China
| | - Suhe Dong
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yang Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Bin Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xuejun Sun
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Roan JN, Hsu CH, Fang SY, Tsai HW, Luo CY, Huang CC, Lam CF. Exendin-4 improves cardiovascular function and survival in flow-induced pulmonary hypertension. J Thorac Cardiovasc Surg 2017; 155:1661-1669.e4. [PMID: 29249493 DOI: 10.1016/j.jtcvs.2017.10.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/16/2017] [Accepted: 10/06/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Systemic left-to-right shunting causes pulmonary arteriopathy, leading to progressive cardiopulmonary failure and a poor prognosis. In this study, we examined the extraglycemic effect of a synthetic glucagon-like peptide, exendin-4, on pulmonary arteriopathy regression and cardiopulmonary function in nondiabetic rats. METHODS Pulmonary hypertension (PH) was induced by monocrotaline (60 mg/kg, subcutaneous) injection followed by the creation of an aortocaval fistula. After 4 weeks, exendin-4 (1 μg/kg/day) was administered intraperitoneally for 3 consecutive weeks, followed by an assessment of cardiopulmonary function, pulmonary artery vasoreactivity, tissue and blood biochemistry, and lung histology. RESULTS Exendin-4 significantly reduced right ventricle mass and pulmonary artery pressure, which improved right ventricle function and the survival rate in rats with PH. Tissue and blood interleukin-1β levels decreased, whereas pulmonary artery cyclic adenosine monophosphate levels were restored by exendin-4. Smooth muscle-myosin heavy chain-II and α-smooth muscle actin protein levels increased in the pulmonary arteries of exendin-4-treated rats. Histology showed that exendin-4 decreased the main and intra-acinar pulmonary artery medial thickness. CONCLUSIONS Exendin-4 treatment improved pulmonary artery function in flow-induced PH via its direct vasoactive properties, anti-inflammatory effects, and vascular smooth muscle cell phenotypic modulation. Mitigation of pulmonary arteriopathy further potentiated right ventricle performance and reduced overall mortality. These responses were associated with suppressed expression and activity of interleukin-1β and its downstream signaling molecules. Glucagon-like peptide analogs may possess pleiotropic therapeutic potential in flow-induced PH.
Collapse
Affiliation(s)
- Jun-Neng Roan
- Division of Cardiovascular Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hsin Hsu
- Division of Cardiology, Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yuan Fang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chwan-Yau Luo
- Division of Cardiovascular Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chi Huang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Fuh Lam
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; E-Da Hospital/I-Shou University, Kaohsiung City, Taiwan.
| |
Collapse
|
4
|
Sensitivity of KATP channels to cellular metabolic disorders and the underlying structural basis. Acta Pharmacol Sin 2016; 37:134-42. [PMID: 26725741 DOI: 10.1038/aps.2015.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/25/2015] [Indexed: 11/08/2022] Open
Abstract
AIM ATP-sensitive potassium (KATP) channels formed by a combination of SUR/Kir6.x subunits play a crucial role in protection against hypoxic or ischemic injuries resulting from cell metabolic disorders. In this study we investigated the effects of Na-azide, a metabolic inhibitor, on KATP channels expressed in Xenopus oocytes, and explored the structure basis for their sensitivity to cell metabolic disorders. METHODS Six subtypes of KATP channels (wild SUR1/Kir6.2, SUR2B/Kir6.2, SUR1/Kir6.1, SUR2B/Kir6.1, SUR2A/Kir6.2 and SUR2A/Kir6.1), as well as eleven subtypes of KATP channels with mutant subunits were expressed in Xenopus oocytes. KATP currents were recorded using a two-electrode voltage clamp recording technique. The drugs were applied through bath. RESULTS Except SUR2A/Kir6.1, five subtypes of KATP channels were activated by Na-azide (3 mmol/L) with an order of the responses: SUR1/Kir6.2>SUR2B/Kir6.2>SUR1/Kir6.1>SUR2B/Kir6.1>SUR2A/Kir6.2, and the opening rate (t1/2) was SUR1/Kir6.x>SUR2B/Kir6.x>SUR2A/Kir6.2. Furthermore, Kir6.2, rather than Kir6.1, had intrinsic sensitivity to Na-azide, and the residues involved in ATP-binding (R50 and K185) or pH-sensing (H175) were associated with the sensitivity of the Kir6.2 subunit to Na-azide. Moreover, the residues (K707 and K1348) within the Walker A (WA) motifs of two nucleotide-binding domains (NBDs) were essential for SUR2B/Kir6.x (especially SUR2B/Kir6.1) channel activation by Na-azide, suggesting a key role for Mg-adenine nucleotide binding and/or hydrolysis in the SUR2B subunit. CONCLUSION Among the six subtypes of KATP channels, SUR1/Kir6.2 is the most sensitive, whereas SUR2A/Kir6.1 is insensitive, to cell metabolic disorders. The Kir6.2 subunit, rather than the Kir6.1 subunit, has intrinsic sensitivity to cell metabolic disorders. The residues (K707 and K1348) within the WA motifs of SUR2B are important for the sensitivity of SUR2B/Kir6.x channels to cell metabolic disorders.
Collapse
|
5
|
Testai L, Rapposelli S, Martelli A, Breschi M, Calderone V. Mitochondrial Potassium Channels as Pharmacological Target for Cardioprotective Drugs. Med Res Rev 2014; 35:520-53. [DOI: 10.1002/med.21332] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L. Testai
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - S. Rapposelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - A. Martelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - M.C. Breschi
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - V. Calderone
- Department of Pharmacy; University of Pisa; Pisa Italy
| |
Collapse
|
6
|
Liu ZW, Niu XL, Chen KL, Xing YJ, Wang X, Qiu C, Gao DF. Selenium attenuates adriamycin-induced cardiac dysfunction via restoring expression of ATP-sensitive potassium channels in rats. Biol Trace Elem Res 2013; 153:220-8. [PMID: 23475371 DOI: 10.1007/s12011-013-9641-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
Abstract
The possible mechanism of adriamycin (ADR) and/or selenium (Se) deficiency-induced cardiac dysfunction, and cardioprotective effects of Se against ADR-induced cardiac toxicity were investigated in this study. Cardiac function was evaluated by plasma brain natriuretic peptide level and echocardiographic and hemodynamic parameters. Cardiac glutathione peroxidase (GPx) activity was assessed spectrophotometrically. Expression of ATP-sensitive potassium channels (KATP) subunits-SUR2A and Kir6.2-were examined by real-time PCR and Western blotting. The results showed that cardiac function and cardiac GPx activity decreased remarkably after administration of ADR or Se deficiency; more dramatic impairment of cardiac function and cardiac GPx activity were observed after co-administration of ADR and Se deficiency. Mechanically, it is novel for us to find down-regulation of KATP subunits gene expression in cardiac tissue after administration of ADR or Se deficiency, and more significant inhibition of cardiac KATP gene expression was identified after co-administration of ADR and Se deficiency. Furthermore, cardiac toxicity of ADR was found alleviated by Se supplementation, accompanied by restoring of cardiac GPx activity and cardiac KATP gene expression. These results indicate that decreased expression of cardiac KATP is involved in adriamycin and/or Se deficiency-induced cardiac dysfunction; Se deficiency exacerbates adriamycin-induced cardiac dysfunction by future inhibition of KATP expression; Se supplementation seems to protect against adriamycin-induced cardiac dysfunction via restoring KATP expression, showing potential clinical application in cancer chemotherapy.
Collapse
Affiliation(s)
- Zhong-Wei Liu
- Department of Cardiology, Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, Xi'an 710004, China
| | | | | | | | | | | | | |
Collapse
|