1
|
Sribnick EA, Popovich PG, Hall MW. Central nervous system injury-induced immune suppression. Neurosurg Focus 2022; 52:E10. [PMID: 35104790 DOI: 10.3171/2021.11.focus21586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022]
Abstract
Central nervous system trauma is a common cause of morbidity and mortality. Additionally, these injuries frequently occur in younger individuals, leading to lifetime expenses for patients and caregivers and the loss of opportunity for society. Despite this prevalence and multiple attempts to design a neuroprotectant, clinical trials for a pharmacological agent for the treatment of traumatic brain injury (TBI) or spinal cord injury (SCI) have provided disappointing results. Improvements in outcome from these disease processes in the past decades have been largely due to improvements in supportive care. Among the many challenges facing patients and caregivers following neurotrauma, posttraumatic nosocomial infection is a significant and potentially reversible risk factor. Multiple animal and clinical studies have provided evidence of posttraumatic systemic immune suppression, and injuries involving the CNS may be even more prone, leading to a higher risk for in-hospital infections following neurotrauma. Patients who have experienced neurotrauma with nosocomial infection have poorer recovery and higher risks of long-term morbidity and in-hospital mortality than patients without infection. As such, the etiology and reversal of postneurotrauma immune suppression is an important topic. There are multiple possible etiologies for these posttraumatic changes including the release of damage-associated molecular patterns, the activation of immunosuppressive myeloid-derived suppressor cells, and sympathetic nervous system activation. Postinjury systemic immunosuppression, particularly following neurotrauma, provides a challenge for clinicians but also an opportunity for improvement in outcome. In this review, the authors sought to outline the evidence of postinjury systemic immune suppression in both animal models and clinical research of TBI, TBI polytrauma, and SCI.
Collapse
Affiliation(s)
- Eric A Sribnick
- 1Department of Neurosurgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus.,2The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Phillip G Popovich
- 3Department of Neuroscience.,4Center for Brain and Spinal Cord Repair.,5Belford Center for Spinal Cord Injury, and.,6Medical Scientist Training Program, The Ohio State University, College of Medicine, Columbus; and
| | - Mark W Hall
- 2The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,7Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
2
|
Karmali SN, Sciusco A, May SM, Ackland GL. Heart rate variability in critical care medicine: a systematic review. Intensive Care Med Exp 2017; 5:33. [PMID: 28702940 PMCID: PMC5507939 DOI: 10.1186/s40635-017-0146-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Heart rate variability (HRV) has been used to assess cardiac autonomic activity in critically ill patients, driven by translational and biomarker research agendas. Several clinical and technical factors can interfere with the measurement and/or interpretation of HRV. We systematically evaluated how HRV parameters are acquired/processed in critical care medicine. METHODS PubMed, MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials (1996-2016) were searched for cohort or case-control clinical studies of adult (>18 years) critically ill patients using heart variability analysis. Duplicate independent review and data abstraction. Study quality was assessed using two independent approaches: Newcastle-Ottowa scale and Downs and Black instrument. Conduct of studies was assessed in three categories: (1) study design and objectives, (2) procedures for measurement, processing and reporting of HRV, and (3) reporting of relevant confounding factors. RESULTS Our search identified 31/271 eligible studies that enrolled 2090 critically ill patients. A minority of studies (15; 48%) reported both frequency and time domain HRV data, with non-normally distributed, wide ranges of values that were indistinguishable from other (non-critically ill) disease states. Significant heterogeneity in HRV measurement protocols was observed between studies; lack of adjustment for various confounders known to affect cardiac autonomic regulation was common. Comparator groups were often omitted (n = 12; 39%). This precluded meaningful meta-analysis. CONCLUSIONS Marked differences in methodology prevent meaningful comparisons of HRV parameters between studies. A standardised set of consensus criteria relevant to critical care medicine are required to exploit advances in translational autonomic physiology.
Collapse
Affiliation(s)
- Shamir N Karmali
- Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Alberto Sciusco
- Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Shaun M May
- Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gareth L Ackland
- Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
3
|
Maslove DM, Lamontagne F, Marshall JC, Heyland DK. A path to precision in the ICU. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:79. [PMID: 28366166 PMCID: PMC5376689 DOI: 10.1186/s13054-017-1653-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Precision medicine is increasingly touted as a groundbreaking new paradigm in biomedicine. In the ICU, the complexity and ambiguity of critical illness syndromes have been identified as fundamental justifications for the adoption of a precision approach to research and practice. Inherently protean diseases states such as sepsis and acute respiratory distress syndrome have manifestations that are physiologically and anatomically diffuse, and that fluctuate over short periods of time. This leads to considerable heterogeneity among patients, and conditions in which a “one size fits all” approach to therapy can lead to widely divergent results. Current ICU therapy can thus be seen as imprecise, with the potential to realize substantial gains from the adoption of precision medicine approaches. A number of challenges still face the development and adoption of precision critical care, a transition that may occur incrementally rather than wholesale. This article describes a few concrete approaches to addressing these challenges. First, novel clinical trial designs, including registry randomized controlled trials and platform trials, suggest ways in which conventional trials can be adapted to better accommodate the physiologic heterogeneity of critical illness. Second, beyond the “omics” technologies already synonymous with precision medicine, the data-rich environment of the ICU can generate complex physiologic signatures that could fuel precision-minded research and practice. Third, the role of computing infrastructure and modern informatics methods will be central to the pursuit of precision medicine in the ICU, necessitating close collaboration with data scientists. As work toward precision critical care continues, small proof-of-concept studies may prove useful in highlighting the potential of this approach.
Collapse
Affiliation(s)
- David M Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada. .,Department of Medicine, Queen's University, Kingston, ON, Canada. .,Department of Critical Care Medicine, Kingston General Hospital, Davies 2, 76 Stuart St., Kingston, Ontario, K7L 2V7, Canada.
| | - Francois Lamontagne
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHU de Sherbrooke, Sherbrooke, QC, Canada.,Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - John C Marshall
- Department of Surgery, University of Toronto, Toronto, ON, Canada.,Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada.,St. Michael's Hospital, Toronto, ON, Canada
| | - Daren K Heyland
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada.,Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, ON, Canada
| |
Collapse
|
4
|
Berntson L. Anti-inflammatory effect by exclusive enteral nutrition (EEN) in a patient with juvenile idiopathic arthritis (JIA): brief report. Clin Rheumatol 2014; 33:1173-5. [DOI: 10.1007/s10067-014-2672-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 12/15/2022]
|
5
|
Vodovotz Y, An G, Androulakis IP. A Systems Engineering Perspective on Homeostasis and Disease. Front Bioeng Biotechnol 2013; 1:6. [PMID: 25022216 PMCID: PMC4090890 DOI: 10.3389/fbioe.2013.00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/16/2013] [Indexed: 01/06/2023] Open
Abstract
Engineered systems are coupled networks of interacting sub-systems, whose dynamics are constrained to requirements of robustness and flexibility. They have evolved by design to optimize function in a changing environment and maintain responses within ranges. Analysis, synthesis, and design of complex supply chains aim to identify and explore the laws governing optimally integrated systems. Optimality expresses balance between conflicting objectives while resiliency results from dynamic interactions among elements. Our increasing understanding of life’s multi-scale architecture suggests that living systems share similar characteristics with much to be learned about biological complexity from engineered systems. If health reflects a dynamically stable integration of molecules, cell, tissues, and organs; disease indicates displacement compensated for and corrected by activation and combination of feedback mechanisms through interconnected networks. In this article, we draw analogies between concepts in systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Gary An
- Department of Surgery, The University of Chicago , Chicago, IL , USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University , Piscataway, NJ , USA ; Department of Chemical and Biochemical Engineering, Rutgers University , Piscataway, NJ , USA ; Department of Surgery, Rutgers Robert Wood Johnson Medical School , New Brunswick, NJ , USA
| |
Collapse
|