1
|
Zhang J, Guo Y, Mak M, Tao Z. Translational medicine for acute lung injury. J Transl Med 2024; 22:25. [PMID: 38183140 PMCID: PMC10768317 DOI: 10.1186/s12967-023-04828-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Acute lung injury (ALI) is a complex disease with numerous causes. This review begins with a discussion of disease development from direct or indirect pulmonary insults, as well as varied pathogenesis. The heterogeneous nature of ALI is then elaborated upon, including its epidemiology, clinical manifestations, potential biomarkers, and genetic contributions. Although no medication is currently approved for this devastating illness, supportive care and pharmacological intervention for ALI treatment are summarized, followed by an assessment of the pathophysiological gap between human ALI and animal models. Lastly, current research progress on advanced nanomedicines for ALI therapeutics in preclinical and clinical settings is reviewed, demonstrating new opportunities towards developing an effective treatment for ALI.
Collapse
Affiliation(s)
- Jianguo Zhang
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yumeng Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA
| | - Zhimin Tao
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
2
|
Narota A, Singh R, Bansal R, Kumar A, Naura AS. Isolation & identification of anti-inflammatory constituents of Randia dumetorum lamk. fruit: Potential beneficial effects against acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115759. [PMID: 36216197 DOI: 10.1016/j.jep.2022.115759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Randia dumetorum Lamk. is an Indian traditional medicinal plant that has been used for the treatment of various disorders including respiratory ailments. AIM OF THE STUDY In continuation of our recent report that the Ethanol soluble fraction (ESF) of Randia dumetorum fruit had potent anti-inflammatory activity against acute lung injury (ALI) in mice, the present work was undertaken to unveil the key bioactive constituents possessing anti-inflammatory action against ALI by employing bioactivity-guided fractionation of ESF. MATERIAL AND METHODS Different fractions/sub-fractions obtained by column chromatography of ESF were subjected to bioactivity studies by analyzing total and differential count, and protein content in broncho-alveolar lavage fluid (BALF) procured from mice. The most bioactive sub-fraction F3.2 was analyzed for the assessment of various inflammatory mediators using molecular techniques like ELISA, PCR, and western blotting. Further, an attempt was made to separate the key compounds in F3.2 using solvents of differential polarities; and isolated compounds were validated for their anti-inflammatory activity followed by their characterization using spectral techniques like 1HNMR, 13CNMR, FT-IR, and ESIMS Mass Spectrometry. RESULTS The column chromatography of ESF yielded four fractions (F1, F2, F3, and F4) and data revealed that maximum activity resides in F3. Further fractionation of F3 yielded sub-fractions F3.1, F3.2, F3.3, and F3.4 which when tested for anti-inflammatory potential, showed F3.2 as the most active one. Moreover, the effect of F3.2 on oxidative stress parameters and inflammatory mediators analyzed via biochemical assays, PCR, and ELISA revealed the proficiency of this fraction in amelioration of ALI. F3.2 was then subjected to recrystallization using different solvents and two pure compounds were isolated which were characterized as D-Mannitol and Oleanolic acid (OA). D-Mannitol did not display any bioactivity, but OA showed potent anti-inflammatory activity. CONCLUSION Considering the ethnopharmacological role of R. dumetorum in respiratory ailments, OA as an aglycone moiety seems to be the main active principle possessing anti-inflammatory potential against ALI.
Collapse
Affiliation(s)
- Arun Narota
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Ashwani Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
MIKOLKA P, KOSUTOVA P, KOLOMAZNIK M, MATEFFY S, NEMCOVA N, MOKRA D, CALKOVSKA A. Efficacy of surfactant therapy of ARDS induced by hydrochloric acid aspiration followed by ventilator-induced lung injury - an animal study. Physiol Res 2022; 71:S237-S249. [PMID: 36647912 PMCID: PMC9906666 DOI: 10.33549/physiolres.935003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The development of acute respiratory distress syndrome (ARDS) is known to be independently attributable to aspiration-induced lung injury. Mechanical ventilation as a high pressure/volume support to maintain sufficient oxygenation of a patient could initiate ventilator-induced lung injury (VILI) and thus contribute to lung damage. Although these phenomena are rare in the clinic, they could serve as the severe experimental model of alveolar-capillary membrane deterioration. Lung collapse, diffuse inflammation, alveolar epithelial and endothelial damage, leakage of fluid into the alveoli, and subsequent inactivation of pulmonary surfactant, leading to respiratory failure. Therefore, exogenous surfactant could be considered as a therapy to restore lung function in experimental ARDS. This study aimed to investigate the effect of modified porcine surfactant in animal model of severe ARDS (P/F ratio </=13.3 kPa) induced by intratracheal instillation of hydrochloric acid (HCl, 3 ml/kg, pH 1.25) followed by VILI (V(T) 20 ml/kg). Adult rabbits were divided into three groups: untreated ARDS, model treated with a bolus of poractant alfa (Curosurf®, 2.5 ml/kg, 80 mg phospholipids/ml), and healthy ventilated animals (saline), which were oxygen-ventilated for an additional 4 h. The lung function parameters, histological appearance, degree of lung edema and levels of inflammatory and oxidative markers in plasma were evaluated. Whereas surfactant therapy with poractant alfa improved lung function, attenuated inflammation and lung edema, and partially regenerated significant changes in lung architecture compared to untreated controls. This study indicates a potential of exogenous surfactant preparation in the treatment of experimental ARDS.
Collapse
Affiliation(s)
- Pavol MIKOLKA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Petra KOSUTOVA
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Maros KOLOMAZNIK
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Stanislav MATEFFY
- Diagnostic Center of Pathology in Prešov, Unilabs Slovakia, Martin, Slovak Republic
| | - Nikolett NEMCOVA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Daniela MOKRA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Andrea CALKOVSKA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
4
|
Solopov P, Marinova M, Dimitropoulou C, Colunga Biancatelli RML, Catravas JD. Development of chronic lung injury and pulmonary fibrosis in mice following acute exposure to nitrogen mustard. Inhal Toxicol 2020; 32:141-154. [PMID: 32362214 DOI: 10.1080/08958378.2020.1757791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: Sulfur mustards are toxic agents used as a chemical warfare in the twentieth century. Exposure to nitrogen mustards (NM), their more water-soluble analogs, is associated with respiratory, dermatological, neurological, and systemic symptoms whose severity depends on dose and length of contact. Long-term effects of acute inhalation have been related to the development of chronic lung injury and pulmonary fibrosis whose precise mechanisms and potential antidotes are yet to be discovered.Materials and methods: We have developed a model of NM-induced pulmonary fibrosis by intratracheally instilling mechlorethamine hydrochloride into C57Bl/6J male mice.Results and Discussion: Following mechlorethamine exposure, strong early and milder late inflammatory responses were observed. Initially, the number of white blood cells and levels of protein and pro-inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) increased, followed by increases in the number of macrophages and the levels of transforming growth factor-β (TGF-β), a pro-fibrotic mediator. Analysis of lung homogenates revealed increased phosphorylation of pro-fibrotic biomarkers, serine/threonine-selective protein kinases (p-ERK), and heat shock protein 90 (P-HSP90) at 10 and 30 days after exposure. Total collagen expression and deposition of extracellular matrix proteins also increased. Lung function measurements demonstrated the presence of both obstructive and restrictive disease in agreement with evidence of increased lower airway peribronchial collagen deposition and parenchymal fibrosis.Conclusions: We conclude that the mouse represents a useful model of NM-induced acute lung injury and chronic pulmonary fibrosis, the latter driven by the overexpression of TGF-β, p-ERK, and P-HSP90. This model may prove useful in the pre-clinical development of antidotes and other countermeasures.
Collapse
Affiliation(s)
- Pavel Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Margarita Marinova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | | | - Ruben M L Colunga Biancatelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,Policlinico Umberto I, La Sapienza Università di Roma, Rome, Italy
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
5
|
Marinova M, Solopov P, Dimitropoulou C, Colunga Biancatelli RML, Catravas JD. Acute exposure of mice to hydrochloric acid leads to the development of chronic lung injury and pulmonary fibrosis. Inhal Toxicol 2019; 31:147-160. [PMID: 31232121 DOI: 10.1080/08958378.2019.1624895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: Accidental exposure to hydrochloric acid (HCl) is associated with acute lung injury in humans, development of long-term chronic airway obstruction, and fibrosis. However, the mechanisms responsible for the progression to pulmonary fibrosis remain unclear. We utilized a mouse model of progressive lung injury from a single exposure to HCl to investigate the effects of HCl on the lower respiratory tract. Materials and methods: HCl (0.05-0.3 N) or saline was injected intratracheally into male C57Bl/6J mice. At 1, 4, 10 and 30 days post instillation, bronchoalveolar lavage fluid (BALF) and lung tissues were collected and examined for multiple outcomes. Results and discussion: We observed an early inflammatory response and a late mild inflammation present even at 30 d post HCl exposure. Mice treated with HCl exhibited higher total leukocyte and protein levels in the BALF compared to the vehicle group. This was characterized by increased number of neutrophils, monocytes, and lymphocytes as well as pro-inflammatory cytokines during the first 4 d of injury. The late inflammatory response exhibited a predominant presence of mononuclear cells, increased permeability to protein, and higher levels of the pro-fibrotic mediator TGFβ. Pro-fibrotic protein biomarkers, phosphorylated ERK, and HSP90, were also overexpressed at 10 and 30 d following HCl exposure. In vivo lung function measurements demonstrated lung dysfunction and chronic lung injury associated with increased lung hydroxyproline content and increased expression of extracellular matrix (ECM) proteins. The acute inflammation and severity of fibrosis increased in HCl-concentration dependent manner. Conclusions: Our findings suggest that the initial inflammatory response and pro-fibrotic biomarker upregulation may be linked to the progression of pulmonary fibrosis and airway dysfunction and may represent valuable therapeutic targets.
Collapse
Affiliation(s)
- Margarita Marinova
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA
| | - Pavel Solopov
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA
| | | | - Ruben M L Colunga Biancatelli
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA.,b Policlinico Umberto I, La Sapienza University of Rome , Rome , Italy
| | - John D Catravas
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA.,c School of Medical Diagnostic & Translational Sciences , College of Health Sciences, Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
6
|
Vassiliou AG, Manitsopoulos N, Kardara M, Maniatis NA, Orfanos SE, Kotanidou A. Differential Expression of Aquaporins in Experimental Models of Acute Lung Injury. ACTA ACUST UNITED AC 2018; 31:885-894. [PMID: 28882955 DOI: 10.21873/invivo.11143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022]
Abstract
AIM The mammalian lung expresses at least three aquaporin (AQP) water channels whose precise role in lung injury or inflammation is still controversial. MATERIALS AND METHODS Three murine models of lung inflammation and corresponding controls were used to evaluate the expression of Aqp1, Aqp4, Aqp5 and Aqp9: lipopolysaccharide (LPS)-induced lung injury; HCl-induced lung injury; and ventilation-induced lung injury (VILI). RESULTS All models yielded increased lung vascular permeability, and inflammatory cell infiltration in the broncho-alveolar lavage fluid; VILI additionally produced altered lung mechanics. Lung expression of Aqp4 decreased in the models that targeted primarily the alveolar epithelium, i.e. acid aspiration and mechanical ventilation, while Aqp5 expression decreased in the model that appeared to target both the capillary endothelium and alveolar epithelium, i.e. LPS. CONCLUSION Participation of aquaporins in the acute inflammatory process depends on localization and the type of lung injury.
Collapse
Affiliation(s)
- Alice G Vassiliou
- GP Livanos and M. Simou Laboratories, First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolaos Manitsopoulos
- GP Livanos and M. Simou Laboratories, First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Matina Kardara
- GP Livanos and M. Simou Laboratories, First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolaos A Maniatis
- GP Livanos and M. Simou Laboratories, First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Second Department of Critical Care, Attikon Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Stylianos E Orfanos
- GP Livanos and M. Simou Laboratories, First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece .,Second Department of Critical Care, Attikon Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Anastasia Kotanidou
- GP Livanos and M. Simou Laboratories, First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,First Department of Critical Care Medicine & Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
7
|
Abstract
Increased levels of tumor necrosis factor (TNF) α have been linked to a number of pulmonary inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), sarcoidosis, and interstitial pulmonary fibrosis (IPF). TNFα plays multiple roles in disease pathology by inducing an accumulation of inflammatory cells, stimulating the generation of inflammatory mediators, and causing oxidative and nitrosative stress, airway hyperresponsiveness and tissue remodeling. TNFα-targeting biologics, therefore, present a potentially highly efficacious treatment option. This review summarizes current knowledge on the role of TNFα in pulmonary disease pathologies, with a focus on the therapeutic potential of TNFα-targeting agents in treating inflammatory lung diseases.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
8
|
Chiu S, Fernandez R, Subramanian V, Sun H, DeCamp MM, Kreisel D, Perlman H, Budinger GRS, Mohanakumar T, Bharat A. Lung Injury Combined with Loss of Regulatory T Cells Leads to De Novo Lung-Restricted Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:51-7. [PMID: 27194786 DOI: 10.4049/jimmunol.1502539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/21/2016] [Indexed: 01/02/2023]
Abstract
More than one third of patients with chronic lung disease undergoing lung transplantation have pre-existing Abs against lung-restricted self-Ags, collagen type V (ColV), and k-α1 tubulin (KAT). These Abs can also develop de novo after lung transplantation and mediate allograft rejection. However, the mechanisms leading to lung-restricted autoimmunity remain unknown. Because these self-Ags are normally sequestered, tissue injury is required to expose them to the immune system. We previously showed that respiratory viruses can induce apoptosis in CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), the key mediators of self-tolerance. Therefore, we hypothesized that lung-tissue injury can lead to lung-restricted immunity if it occurs in a setting when Tregs are impaired. We found that human lung recipients who suffer respiratory viral infections experienced a decrease in peripheral Tregs. Pre-existing lung allograft injury from donor-directed Abs or gastroesophageal reflux led to new ColV and KAT Abs post respiratory viral infection. Similarly, murine parainfluenza (Sendai) respiratory viral infection caused a decrease in Tregs. Intratracheal instillation of anti-MHC class I Abs, but not isotype control, followed by murine Sendai virus infection led to development of Abs against ColV and KAT, but not collagen type II (ColII), a cartilaginous protein. This was associated with expansion of IFN-γ-producing CD4(+) T cells specific to ColV and KAT, but not ColII. Intratracheal anti-MHC class I Abs or hydrochloric acid in Foxp3-DTR mice induced ColV and KAT, but not ColII, immunity, only if Tregs were depleted using diphtheria toxin. We conclude that tissue injury combined with loss of Tregs can lead to lung-tissue-restricted immunity.
Collapse
Affiliation(s)
- Stephen Chiu
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Ramiro Fernandez
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | | | - Haiying Sun
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Malcolm M DeCamp
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Daniel Kreisel
- Washington University School of Medicine, St. Louis, MO 63110
| | - Harris Perlman
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - G R Scott Budinger
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | | | - Ankit Bharat
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
9
|
Preira P, Forel JM, Robert P, Nègre P, Biarnes-Pelicot M, Xeridat F, Bongrand P, Papazian L, Theodoly O. The leukocyte-stiffening property of plasma in early acute respiratory distress syndrome (ARDS) revealed by a microfluidic single-cell study: the role of cytokines and protection with antibodies. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:8. [PMID: 26757701 PMCID: PMC4711060 DOI: 10.1186/s13054-015-1157-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/06/2015] [Indexed: 12/19/2022]
Abstract
Background Leukocyte-mediated pulmonary inflammation is a key pathophysiological mechanism involved in acute respiratory distress syndrome (ARDS). Massive sequestration of leukocytes in the pulmonary microvasculature is a major triggering event of the syndrome. We therefore investigated the potential role of leukocyte stiffness and adhesiveness in the sequestration of leukocytes in microvessels. Methods This study was based on in vitro microfluidic assays using patient sera. Cell stiffness was assessed by measuring the entry time (ET) of a single cell into a microchannel with a 6 × 9–μm cross-section under a constant pressure drop (ΔP = 160 Pa). Primary neutrophils and monocytes, as well as the monocytic THP-1 cell line, were used. Cellular adhesiveness to human umbilical vein endothelial cells was examined using the laminar flow chamber method. We compared the properties of cells incubated with the sera of healthy volunteers (n = 5), patients presenting with acute cardiogenic pulmonary edema (ACPE; n = 6), and patients with ARDS (n = 22), of whom 13 were classified as having moderate to severe disease and the remaining 9 as having mild disease. Results Rapid and strong stiffening of primary neutrophils and monocytes was induced within 30 minutes (mean ET >50 seconds) by sera from the ARDS group compared with both the healthy subjects and the ACPE groups (mean ET <1 second) (p < 0.05). Systematic measurements with the THP-1 cell line allowed for the establishment of a strong correlation between stiffening and the severity of respiratory status (mean ET 0.82 ± 0.08 seconds for healthy subjects, 1.6 ± 1.0 seconds for ACPE groups, 10.5 ± 6.1 seconds for mild ARDS, and 20.0 ± 8.1 seconds for moderate to severe ARDS; p < 0.05). Stiffening correlated with the cytokines interleukin IL-1β, IL-8, tumor necrosis factor TNF-α, and IL-10 but not with interferon-γ, transforming growth factor-β, IL-6, or IL-17. Strong stiffening was induced by IL-1β, IL-8, and TNF-α but not by IL-10, and incubations with sera and blocking antibodies against IL-1β, IL-8, or TNF-α significantly diminished the stiffening effect of serum. In contrast, the measurements of integrin expression (CD11b, CD11a, CD18, CD49d) and leukocyte–endothelium adhesion showed a weak and slow response after incubation with the sera of patients with ARDS (several hours), suggesting a lesser role of leukocyte adhesiveness compared with leukocyte stiffness in early ARDS. Conclusions The leukocyte stiffening induced by cytokines in the sera of patients might play a role in the sequestration of leukocytes in the lung capillary beds during early ARDS. The inhibition of leukocyte stiffening with blocking antibodies might inspire future therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1157-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pascal Preira
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France. .,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France.
| | - Jean-Marie Forel
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France. .,Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France.
| | - Philippe Robert
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France. .,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France.
| | - Paulin Nègre
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France.,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France
| | - Martine Biarnes-Pelicot
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France.,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France
| | - Francois Xeridat
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France. .,Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France.
| | - Pierre Bongrand
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France. .,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France.
| | - Laurent Papazian
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France. .,Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France.
| | - Olivier Theodoly
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France. .,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France.
| |
Collapse
|
10
|
Chen Q, Huang Y, Yang Y, Qiu H. Acid‑induced cell injury and death in lung epithelial cells is associated with the activation of mitogen‑activated protein kinases. Mol Med Rep 2013; 8:565-70. [PMID: 23784034 DOI: 10.3892/mmr.2013.1537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/11/2013] [Indexed: 11/06/2022] Open
Abstract
Gastric hydrochloric acid (HCl) has been regarded as a causative factor of acute lung injury (ALI). The activation of mitogen‑activated protein kinases (MAPKs) has been suggested to be a mechanism involved in the pathogenesis of ALI in vivo. However, the effects of HCl on MAPK activation in lung epithelial cells remain to be fully elucidated. Further investigation into the role of MAPK activation in acid‑induced cell injury and death is also needed. In the present study, BEAS‑2B cells were treated with HCl (pH 4.0 medium) for 5, 15 and 30 min, and the acidified medium was then removed. Cell viability and death were detected by MTT assay and trypan blue exclusion staining, respectively. The activation of MAPKs [c‑Jun N‑terminal kinase (JNK), p38 MAPK and extracellular signal‑regulated kinase (ERK) 1/2] was analyzed by western blot analysis. Cytotoxicity was assessed by lactate dehydrogenase (LDH) release, and IL‑8 levels in culture supernatants were measured by enzyme‑linked immunosorbent assay (ELISA). Cell apoptosis was detected as changes in the levels of capase‑3, Bad and fas by western blot analysis and the number of apoptotic cells by using Annexin V/propidium iodide (PI) staining. Following pre‑treatment with the JNK inhibitor II (10 µmol/l), the p38 inhibitor SB202190 (10 µmol/l) or the ERK inhibitor U0126 (10 µmol/l) for 30 min, BEAS‑2B cells were exposed to HCl for 30 min. Cell viability, cytotoxicity, IL‑8 levels and apoptosis were detected 4 h following acid stimulation. The viability of BEAS‑2B cells was inhibited and cell death was increased in the presence of HCl. HCl stimulation induced activation of MAPKs in a time‑dependent manner. HCl exposure increased the levels of IL‑8 and the release of LDH, and induced apoptosis in BEAS‑2B cells. JNK and p38 inhibitors increased cell viability and decreased cytotoxicity and cell apoptosis, while ERK inhibitor had no effect on cell viability, cytotoxicity or apoptosis. These results indicate that acid exposure induced epithelial cell injury and death. The activation of JNK and p38 is involved in HCl‑induced epithelial lung cell injury and death.
Collapse
Affiliation(s)
- Qiuhua Chen
- Department of Critical Care Medicine, Nanjing Zhong‑Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210009, P.R. China
| | | | | | | |
Collapse
|
11
|
What's new in Shock? October 2012. Shock 2012; 38:335-6. [PMID: 22986793 DOI: 10.1097/shk.0b013e31826ea914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|