1
|
Schütze S, Döpke A, Kellert B, Seele J, Ballüer M, Bunkowski S, Kreutzfeldt M, Brück W, Nau R. Intracerebral Infection with E. coli Impairs Spatial Learning and Induces Necrosis of Hippocampal Neurons in the Tg2576 Mouse Model of Alzheimer’s Disease. J Alzheimers Dis Rep 2022; 6:101-114. [PMID: 35530117 PMCID: PMC9028720 DOI: 10.3233/adr-210049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background: In patients with Alzheimer’s disease (AD), bacterial infections are often associated with a cognitive decline. Animal models of genuine acute infections with viable bacteria which induce deterioration of neurodegenerative diseases are missing. Objective: We assessed the effect of an intracerebral infection with E. coli in a mouse model of AD. Methods: 13-month-old Tg2576 +/- mice and transgene negative littermates (Tg2576 -/-) received an intracerebral injection with E. coli K1 or saline followed by treatment with ceftriaxone starting 41 h post infection (p.i.) for 5 days. For 4 weeks, mice were monitored for clinical status, weight, motor functions, and neuropsychological status using the Morris water maze. ELISAs, stainings, and immunohistochemistry in brains were performed at the end of the experiment. Results: Mortality of the infection was approximately 20%. After 4 weeks, spatial learning of infected Tg2576 +/- mice was compromised compared to non-infected Tg2576 +/- mice (p < 0.05). E. coli infection did not influence spatial learning in Tg2576 -/- mice, or spatial memory in both Tg2576 +/- and -/- mice within 4 weeks p.i.. Necrosis of hippocampal neurons was induced in infected compared to non-infected Tg2576 +/- mice 4 weeks p.i., whereas brain concentrations of Aβ1–40, Aβ1–42, and phosphoTau as well as axonal damage and microglia density were not altered. Conclusion: Here, we proved in principle that a genuine acute bacterial infection can worsen cognitive functions of AD mice. Mouse models of subacute systemic infections are needed to develop new strategies for the treatment of bacterial infections in patients with AD in order to minimize their cognitive decline.
Collapse
Affiliation(s)
- Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Geriatrics, Neurogeriatric Section, AGAPLESION Frankfurter Diakonie Kliniken, Frankfurt, Germany
| | - Anika Döpke
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Benedikt Kellert
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Seele
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Melissa Ballüer
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Bunkowski
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mario Kreutzfeldt
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Pathology and Immunology, University of Geneva and Division of Clinical Pathology, Geneva University Hospital, Centre Médical Universitaire, Geneva, Switzerland
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
2
|
PEPPLER WILLEMT, CASTELLANI LAURAN, ROOT-MCCAIG JARED, TOWNSEND LOGANK, SUTTON CHARLESD, FRENDO-CUMBO SCOTT, MEDAK KYLED, MACPHERSON REBECCAEK, CHARRON MAUREENJ, WRIGHT DAVIDC. Regulation of Hepatic Follistatin Expression at Rest and during Exercise in Mice. Med Sci Sports Exerc 2019; 51:1116-1125. [DOI: 10.1249/mss.0000000000001893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Gu H, Liao Y, Zhang J, Wang Y, Liu Z, Cheng P, Wang X, Zou Q, Gu J. Rational Design and Evaluation of an Artificial Escherichia coli K1 Protein Vaccine Candidate Based on the Structure of OmpA. Front Cell Infect Microbiol 2018; 8:172. [PMID: 29876324 PMCID: PMC5974202 DOI: 10.3389/fcimb.2018.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli (E. coli) K1 causes meningitis and remains an unsolved problem in neonates, despite the application of antibiotics and supportive care. The cross-reactivity of bacterial capsular polysaccharides with human antigens hinders their application as vaccine candidates. Thus, protein antigens could be an alternative strategy for the development of an E. coli K1 vaccine. Outer membrane protein A (OmpA) of E. coli K1 is a potential vaccine candidate because of its predominant contribution to bacterial pathogenesis and sub-cellular localization. However, little progress has been made regarding the use of OmpA for this purpose due to difficulties in OmpA production. In the present study, we first investigated the immunogenicity of the four extracellular loops of OmpA. Using the structure of OmpA, we rationally designed and successfully generated the artificial protein OmpAVac, composed of connected loops from OmpA. Recombinant OmpAVac was successfully produced in E. coli BL21 and behaved as a soluble homogenous monomer in the aqueous phase. Vaccination with OmpAVac induced Th1, Th2, and Th17 immune responses and conferred effective protection in mice. In addition, OmpAVac-specific antibodies were able to mediate opsonophagocytosis and inhibit bacterial invasion, thereby conferring prophylactic protection in E. coli K1-challenged adult mice and neonatal mice. These results suggest that OmpAVac could be a good vaccine candidate for the control of E. coli K1 infection and provide an additional example of structure-based vaccine design.
Collapse
Affiliation(s)
- Hao Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yaling Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jin Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China.,Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhiyong Liu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xingyong Wang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
4
|
|
5
|
Hansen JS, Plomgaard P. Circulating follistatin in relation to energy metabolism. Mol Cell Endocrinol 2016; 433:87-93. [PMID: 27264073 DOI: 10.1016/j.mce.2016.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022]
Abstract
Recently, substantial evidence has emerged that the liver contributes significantly to the circulating levels of follistatin and that circulating follistatin is tightly regulated by the glucagon-to-insulin ratio. Both observations are based on investigations of healthy subjects. These novel findings challenge the present view of circulating follistatin in human physiology, being that circulating follistatin is a result of spill-over from para/autocrine actions in various tissues and cells. Follistatin as a liver-derived protein under the regulation of glucagon-to-insulin ratio suggests a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated with elevated levels of circulating follistatin have a metabolic denominator with decreased insulin sensitivity and/or hyperglucagoneimia.
Collapse
Affiliation(s)
- Jakob Schiøler Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; The Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; The Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark.
| |
Collapse
|
6
|
Kumar P, Friebe K, Schallhorn R, Moinfar Z, Nau R, Bähr M, Schütze S, Hein K. Systemic Escherichia coli infection does not influence clinical symptoms and neurodegeneration in experimental autoimmune encephalomyelitis. BMC Neurosci 2015; 16:36. [PMID: 26088203 PMCID: PMC4472157 DOI: 10.1186/s12868-015-0172-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/03/2015] [Indexed: 01/13/2023] Open
Abstract
Background Systemic infections can influence the course of multiple sclerosis (MS), especially by driving recurrent acute episodes. The question whether the infection enhances tissue damage is of great clinical importance and cannot easily be assessed in clinical trials. Here, we investigated the effects of a systemic infection with Escherichia coli, a Gram-negative bacterium frequently causing urinary tract infections, on the clinical course as well as on neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Methods Rats were immunized with myelin oligodendrocyte glycoprotein (MOG1–125) and challenged intraperitoneally with live E. coli K1 in the preclinical or in the clinical phase of the disease. To ensure the survival of animals, antibiotic treatment with ceftriaxone was initiated 36 h after the infection and continued for 3 consecutive days. Results Systemic infection with E. coli did not influence the onset of clinical EAE symptoms or disease severity. Analysis of the optic nerve and retinal ganglion cells revealed no significant changes in the extent of inflammatory infiltrates, demyelination and neurodegeneration after E. coli infection. Conclusions We could not confirm the detrimental effect of lipopolysaccharide-induced systemic inflammation, a model frequently used to mimic the bacterial infection, previously observed in animal models of MS. Our results indicate that the effect of an acute E. coli infection on the course of MS is less pronounced than suspected and underline the need for adequate models to test the role of systemic infections in the pathogenesis of MS.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Katharina Friebe
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Rieka Schallhorn
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Zahra Moinfar
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Mathias Bähr
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Katharina Hein
- Department of Neurology, University Hospital, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| |
Collapse
|
7
|
What's new in Shock? December 2012. Shock 2012; 38:575-6. [PMID: 23160519 DOI: 10.1097/shk.0b013e318278ae5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|