1
|
Mohammed Abdulsalam T, Hasanin AH, Hussein Mohamed R, Khairy E, Mahmoud D, Habib EK, Badawy AES. A comparative study between angiotensin receptor neprilysin inhibitor (thiorphan/irbesartan) with each of nitrate and carvedilol in a rat model of myocardial ischemic reperfusion injury. Fundam Clin Pharmacol 2023. [PMID: 36868872 DOI: 10.1111/fcp.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The combined angiotensin receptor neprilysin inhibitor is a promising cardioprotective pharmacological agent. This study investigated the beneficial effects of thiorphan (TH)/irbesartan (IRB), in myocardial ischemia-reperfusion (IR) injury, compared to each of nitroglycerin and carvedilol. Male Wistar rats were divided into five groups (10 rats/group): Sham, untreated I/R, TH/IRB + IR (0.1/10 mg/kg), nitroglycerin + IR (0.2 mg/kg), and carvedilol + IR (10 mg/kg). Mean arterial blood pressure, cardiac functions and arrhythmia incidence, duration and score were assessed. Cardiac levels of creatine kinase-MB (CK-MB), oxidative stress, endothelin-1, ATP, Na+ /K+ ATPase pump activity and mitochondria complexes activities were measured. Histopathological examination, Bcl/Bax immunohistochemistry studies and electron microscopy examination of left ventricle were performed. TH/IRB preserved the cardiac functions and mitochondrial complexes activities, mitigated cardiac damage, reduced oxidative stress and arrhythmia severity, improved the histopathological changes and decreased cardiac apoptosis. TH/IRB showed a comparable effect to each of nitroglycerin and carvedilol in alleviating the IR injury consequences. TH/IRB showed significant preservation of mitochondrial complexes activity I and II compared to nitroglycerin. TH/IRB significantly increased LVdP/dtmax and decreased oxidative stress, cardiac damage and endothelin-1 along with increasing the ATP content, Na+ /K+ ATPase pump activity and mitochondrial complexes activity when compared to carvedilol. TH/IRB showed a cardioprotective effect in reducing IR injury that is comparable to each of nitroglycerin and carvedilol that could be explained in part by its ability to preserve mitochondrial function, increase ATP, decrease oxidative stress as well as endothelin 1.
Collapse
Affiliation(s)
| | - Amany H Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Khairy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dalia Mahmoud
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman K Habib
- Department of Anatomy and Embryology, Faculty of Medicine, Galala University, Al Galala, Egypt
| | - Ahmed El Sayed Badawy
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Liu B, Zhang Q, Liang Y, Zhang Y, Yuan X, Ling J, Li C. Extracorporeal membrane oxygenation mitigates myocardial injury and improves survival in porcine model of ventricular fibrillation cardiac arrest. Scand J Trauma Resusc Emerg Med 2019; 27:82. [PMID: 31462264 PMCID: PMC6714103 DOI: 10.1186/s13049-019-0653-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Despite decades of improved strategy in conventional cardiopulmonary resuscitation (CCPR), survival rates of favorable neurological outcome after cardiac arrest (CA) remains poor. It is indicated that the survival rate of successful resuscitation of extracorporeal membrane oxygenation (ECMO) is superior to that of CCPR. But the effect of ECMO in heart is unclear. We aimed to investigate whether ECMO produces cardiac protection by ameliorating post-ischemia reperfusion myocardial injury and myocardial apoptosis. METHODS After undergoing 8-min untreated ventricle fibrillation (VF) and 6-min basic life support, 20 male pigs were ultimately used in this study and randomly divided into two groups: CCPR group (n = 10) and extracorporeal CPR (ECPR) group (n = 10). Hemodynamics and blood samples were obtained at baseline and 1, 2, 4, and 6 h during resuscitation. The successfully resuscitated pigs were sacrificed at 6 h after return of spontaneous circulation (ROSC), and the hearts were removed and analyzed under electron microscopy, and immunohistochemistry, quantitative real-time polymerase chain reaction, and immunofluorescence staining assay were performed to evaluate myocardial injury and myocardial apoptosis. RESULTS There were no significant differences at basic hemodynamic status between the two groups. The survival rate of ECPR was significantly higher than CCPR group (10/10 [100%] vs. 4/10 [40%], P = 0.04). Compared to CCPR group, ECPR group exhibited a better outcome in hemodynamic function. Cardiac function was significantly impaired after ROSC in both groups, but left ventricular ejection fraction (LVEF) was significantly elevated in ECPR group than CCPR group. The expression of myocardial injury biomarkers (CK-MB, cTNI, H-FABP), endothelial injury biomarker (sP-selectin), and cardiac function biomarker (BNP) were remarkably increased after ROSC in both groups, but low levels in ECPR group than in CCPR group. Cardiomyocytes injury was attenuated in ECPR group under transmission electron microscopy (TEM). Typical apoptotic nuclei of cardiomyocytes were significantly reduced and oxidative damage were attenuated in ECPR group. CONCLUSIONS During prolonged VF-induced CA, ECPR contributes to improving hemodynamics, attenuating myocardial ischemia-reperfusion injury, ameliorating myocardial ultra structure, improving cardiac function, and elevating survival rate by preventing oxidative damage, regulating energy metabolism, inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Bo Liu
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Qiang Zhang
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Yong Liang
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Yun Zhang
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Xiaoli Yuan
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Jiyang Ling
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Chunsheng Li
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| |
Collapse
|
3
|
Hu Y, Chen X, Li X, Li Z, Diao H, Liu L, Zhang J, Ju J, Wen L, Liu X, Pan Z, Xu C, Hai X, Zhang Y. MicroRNA‑1 downregulation induced by carvedilol protects cardiomyocytes against apoptosis by targeting heat shock protein 60. Mol Med Rep 2019; 19:3527-3536. [PMID: 30896796 PMCID: PMC6471343 DOI: 10.3892/mmr.2019.10034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction (MI) is the most common event in cardiovascular disease. Carvedilol, a β‑blocker with multiple pleiotropic actions, is widely used for the treatment cardiovascular diseases. However, the underlying mechanisms of carvedilol on alleviating MI are not fully understood. The aim of the present study was to investigate whether the beneficial effects of carvedilol were associated with regulation of microRNA‑1 (miR‑1). It was demonstrated that carvedilol ameliorated impaired cardiac function and decreased infarct size in a rat model of MI induced by coronary artery occlusion. Similarly, carvedilol reversed the H2O2‑induced decrease in cardiomyocyte viability in a dose‑dependent manner. The in vivo and in vitro models demonstrated the downregulation of miR‑1 following treatment with carvedilol. Overexpression of miR‑1, a known pro‑apoptotic miRNA, decreased cell viability and induced cell apoptosis. Transfection of miR‑1 abolished the beneficial effects of carvedilol. The expression of heat shock protein 60 (HSP60), a direct target of miR‑1, was identified to be decreased in MI and H2O2‑induced apoptosis, which was associated with a decrease in Bcl‑2 and an increase in Bax; expression was restored following treatment with carvedilol. It was concluded that carvedilol partially exhibited its beneficial effects by downregulating miR‑1 and increasing HSP60 expression. miR‑1 has become a member of the group of carvedilol‑responsive miRNAs. Future studies are required to fully elucidate the potential overlapping or compensatory effects of known carvedilol‑responsive miRNAs and their underlying mechanisms of action in the pathophysiology of cardiovascular diseases.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xi Chen
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xina Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhange Li
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongtao Diao
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lu Liu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jia Zhang
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jin Ju
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lin Wen
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xin Liu
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhenwei Pan
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chaoqian Xu
- Center of Chronic Diseases and Drug Research, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xin Hai
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yong Zhang
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
4
|
Abstract
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Anthony J Maltagliati
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
5
|
The effects of α- and β-adrenergic blocking agents on postresuscitation myocardial dysfunction and myocardial tissue injury in a rat model of cardiac arrest. Transl Res 2015; 165:589-98. [PMID: 25468485 DOI: 10.1016/j.trsl.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022]
Abstract
We investigated the relationship between the severity of postresuscitation (PR) myocardial tissue injury and myocardial dysfunction after the administration of epinephrine as well as the protective effects of α- and β-adrenergic blocking agents. Forty male Sprague-Dawley rats were randomized into 6 groups: (1) placebo; (2) epinephrine; (3) epinephrine pretreated with α1-blocker (prazosin); (4) epinephrine pretreated with α2-blocker (yohimbine); (5) epinephrine pretreated with β-blocker (propranolol); and (6) epinephrine pretreated with β- plus α1-blocker (propranolol and prazosin). Cardiopulmonary resuscitation was initiated after 8 minutes of untreated ventricular fibrillation and continued for an additional 8 minutes. The myocardial function and the serum concentrations of troponin I (Tn I) and N-terminal probrain natriuretic peptide (NT-proBNP) were measured at baseline and after resuscitation. After resuscitation, both Tn I and NT-proBNP were significantly increased in all groups, especially in the epinephrine and epinephrine pretreated with α2-blocker groups. Significantly better PR myocardial function and neurologic deficit score were observed in epinephrine pretreated with the α1- or β-blocker with decreased releases of Tn I and NT-proBNP. However, the most significant improvements were observed in the animals pretreated with β- plus α1-blocker. The present study demonstrated that myocardial stunning may not be the only mechanism of PR myocardial dysfunction. Administration of epinephrine increased the severity of PR myocardial tissue injury and dysfunction. The β- and β- plus α1-blocker pretreatment significantly reduced the severity of PR myocardial tissue injury and myocardial dysfunction with better neurologic function and prolonged duration of survival.
Collapse
|
6
|
Piccoli MT, Gupta SK, Thum T. Noncoding RNAs as regulators of cardiomyocyte proliferation and death. J Mol Cell Cardiol 2015; 89:59-67. [PMID: 25665459 DOI: 10.1016/j.yjmcc.2015.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/15/2015] [Accepted: 02/01/2015] [Indexed: 11/27/2022]
Abstract
Cardiovascular diseases are currently the main cause of morbidity and mortality worldwide. Ischemic heart disease, in particular, is responsible for the majority of cardiac-related deaths. Given the negligible regenerative potential of the human myocardium, there is a strong need for therapeutic strategies aiming at enhancing cardiomyocyte survival and proliferation following injury or at inhibiting their death. MicroRNAs (miRNAs) are small non-coding RNA molecules regulating gene expression at a post-transcriptional level with important functions in cardiovascular physiology and disease. It has been demonstrated that miRNAs can influence the ability of cardiomyocytes to enter the cell cycle and/or escape from death pathways. Additionally, long non coding-RNAs could be involved in such pathways. This review summarizes recent evidences on noncoding RNAs regulating proliferation and death of cardiomyocytes representing a future therapeutic for the treatment of heart diseases. This article is part of a Special Issue entitled SI: Non-coding RNAs.
Collapse
Affiliation(s)
- Maria-Teresa Piccoli
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany; Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Shashi Kumar Gupta
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany; Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College London, UK.
| |
Collapse
|
7
|
Xu C, Hu Y, Hou L, Ju J, Li X, Du N, Guan X, Liu Z, Zhang T, Qin W, Shen N, Bilal MU, Lu Y, Zhang Y, Shan H. β-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression. J Mol Cell Cardiol 2014; 75:111-21. [PMID: 25066695 DOI: 10.1016/j.yjmcc.2014.07.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 01/04/2023]
Abstract
Oxidative stress is a causal factor and key promoter of a variety of cardiovascular diseases associated with apoptotic cell death by causing deregulation of related genes. Though carvedilol, a β-adrenergic blocker, has been shown to produce cytoprotective effects against cardiomyocyte apoptosis, the mechanisms are not fully understood. The present study was designed to investigate whether the beneficial effects of carvedilol are related to microRNAs which have emerged as critical players in cardiovascular pathophysiology via post-transcriptional regulation of protein-coding genes. In vivo, we demonstrated that carvedilol ameliorated impaired cardiac function of infarct rats and restored miR-133 expression. In vitro, carvedilol protected cardiomyocytes from H2O2 induced apoptosis detected by TUNEL staining and MTT assays, and increased miR-133 expression in cardiomyocytes. Overexpression of miR-133, a recognized anti-apoptotic miRNA, produced similar effects to carvedilol: reduction of reactive oxygen species (ROS) and malondialdehyde (MDA) content and increment of superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) level, so as to protect cardiomyocytes from apoptosis by downregulating caspase-9 and caspase-3 expression in the presence of H2O2. Transfection with AMO-133 (antisense inhibitor oligodeoxyribonucleotides) alone abolished the beneficial effects of carvedilol. Caspase-9-specific inhibitor z-LEHD-fmk, caspase-3-specific inhibitor z-DEVD-fmk, caspase-9 siRNA and caspase-3 siRNA were used to establish caspase-3 as a downstream target of miR-133. In conclusion, our data indicated that carvedilol protected cardiomyocytes by increasing miR-133 expression and suppressing caspase-9 and subsequent apoptotic pathways.
Collapse
Affiliation(s)
- Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China; Institute of Cardiovascular Research, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Liangyu Hou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Jin Ju
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoguang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoxiang Guan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenhong Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianze Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, China
| | - Wei Qin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Nannan Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Muhammad U Bilal
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China; Institute of Cardiovascular Research, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China; Institute of Cardiovascular Research, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China; Institute of Cardiovascular Research, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
What’s New in Shock? April 2013. Shock 2013. [DOI: 10.1097/shk.0b013e31828f0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|