1
|
Zhang Z, Li X, Zhang H, Zhang X, Chen H, Pan D, Ji H, Zhou L, Ling J, Zhou J, Yue S, Wang D, Yang Z, Tao K, Dou K. Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation. Xenotransplantation 2017; 24. [PMID: 28714241 DOI: 10.1111/xen.12321] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/08/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pig-to-nonhuman primate orthotopic liver xenotransplantation is often accompanied by thrombocytopenia and coagulation disorders. Furthermore, the release of cytokines can trigger cascade reactions of coagulation and immune attacks within transplant recipients. To better elucidate the process of inflammation in liver xenograft recipients, we utilized a modified heterotopic auxiliary liver xenotransplantation model for xeno-immunological research. We studied the cytokine profiles and the relationship between cytokine levels and xenograft function after liver xenotransplantation. METHODS Appropriate donor and recipient matches were screened using complement-dependent cytotoxicity assays. Donor liver grafts from α1,3-galactosyltransferase gene-knockout (GTKO) pigs or GTKO pigs additionally transgenic for human CD47 (GTKO/CD47) were transplanted into Tibetan macaques via two different heterotrophic auxiliary liver xenotransplantation procedures. The cytokine profiles, hepatic function, and coagulation parameters were monitored during the clinical course of xenotransplantation. RESULTS Xenograft blood flow was stable in recipients after heterotopic auxiliary transplantation. A Doppler examination indicated that the blood flow speed was faster in the hepatic artery (HA) and hepatic vein (HV) of xenografts subjected to the modified Sur II (HA-abdominal aorta+HV-inferior vena cava) procedure than in those subjected to our previously reported Sur I (HA-splenic artery+HV-left renal vein) procedure. Tibetan macaques receiving liver xenografts did not exhibit severe coagulation disorders or immune rejection. Although the recipients did suffer from a rapid loss of platelets, this loss was mild. In blood samples dynamically collected after xenotransplantation (post-Tx), dramatic increases in the levels of monocyte chemoattractant protein 1, interleukin (IL)-8, granulocyte-macrophage colony-stimulating factor, IL-6, and interferon gamma-induced protein 10 were observed at 1 hour post-Tx, even under immunosuppression. We further confirmed that the elevation in individual cytokine levels was correlated with the onset of graft damage. Finally, the release of cytokines might contribute to leukocyte infiltration in the xenografts. CONCLUSION Here, we established a modified auxiliary liver xenotransplantation model resulting in near-normal hepatic function. Inflammatory cytokines might contribute to early damage in liver xenografts. Controlling the systemic inflammatory response of recipients might prevent early post-Tx graft dysfunction.
Collapse
Affiliation(s)
- Zhuochao Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Chen
- Laboratory Animal Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dengke Pan
- Institute of Animal Science of Chinese Agriculture Sciences Academy, Beijing, China
| | - Hongchen Ji
- Department of Hepatobiliary Surgery, The Chinese PLA General Hospital, Beijing, China
| | - Liang Zhou
- Laboratory Animal Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Ling
- Laboratory Animal Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingshi Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuqiang Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Desheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Abstract
Experience with clinical liver xenotransplantation has largely involved the transplantation of livers from nonhuman primates. Experience with pig livers has been scarce. This brief review will be restricted to assessing the potential therapeutic impact of pig liver xenotransplantation in acute liver failure and the remaining barriers that currently do not justify clinical trials. A relatively new surgical technique of heterotopic pig liver xenotransplantation is described that might play a role in bridging a patient with acute liver failure until either the native liver recovers or a suitable liver allograft is obtained. Other topics discussed include the possible mechanisms for the development of the thrombocytopenis that rapidly occurs after pig liver xenotransplantation in a primate, the impact of pig complement on graft injury, the potential infectious risks, and potential physiologic incompatibilities between pig and human. There is cautious optimism that all of these problems can be overcome by judicious genetic manipulation of the pig. If liver graft survival could be achieved in the absence of thrombocytopenia or rejection for a period of even a few days, there may be a role for pig liver transplantation as a bridge to allotransplantation in carefully selected patients.
Collapse
|
3
|
Aristizabal AM, Caicedo LA, Martínez JM, Moreno M, J Echeverri G. Clinical xenotransplantation, a closer reality: Literature review. Cir Esp 2017; 95:62-72. [PMID: 28237390 DOI: 10.1016/j.ciresp.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 01/22/2023]
Abstract
Xenotransplantation could provide an unlimited supply of organs and solve the current shortage of organs for transplantation. To become a reality in clinical practice, the immunological and physiological barriers and the risk of xenozoonosis that they possess should be resolved. From the immunological point of view, in the last 30 years a significant progress in the production of transgenic pigs has prevented the hyperacute rejection. About xenozoonosis, attention has been focused on the risk of transmission of porcine endogenous retroviruses; however, today, it is considered that the risk is very low and the inevitable transmission should not prevent the clinical xenotransplantation. Regarding the physiological barriers, encouraging results have been obtained and it's expected that the barriers that still need to be corrected can be solved in the future through genetic modifications.
Collapse
Affiliation(s)
- Ana María Aristizabal
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Luis Armando Caicedo
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Juan Manuel Martínez
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Manuel Moreno
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Gabriel J Echeverri
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia.
| |
Collapse
|
4
|
Pitkin Z. New Phase of Growth for Xenogeneic-Based Bioartificial Organs. Int J Mol Sci 2016; 17:E1593. [PMID: 27657057 PMCID: PMC5037858 DOI: 10.3390/ijms17091593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
In this article, we examine the advanced clinical development of bioartificial organs and describe the challenges to implementing such systems into patient care. The case for bioartificial organs is evident: they are meant to reduce patient morbidity and mortality caused by the persistent shortage of organs available for allotransplantation. The widespread introduction and adoption of bioengineered organs, incorporating cells and tissues derived from either human or animal sources, would help address this shortage. Despite the decades of development, the variety of organs studied and bioengineered, and continuous progress in the field, only two bioengineered systems are currently commercially available: Apligraf® and Dermagraft® are both approved by the FDA to treat diabetic foot ulcers, and Apligraf® is approved to treat venous leg ulcers. Currently, no products based on xenotransplantation have been approved by the FDA. Risk factors include immunological barriers and the potential infectivity of porcine endogenous retrovirus (PERV), which is unique to xenotransplantation. Recent breakthroughs in gene editing may, however, mitigate risks related to PERV. Because of its primary role in interrupting progress in xenotransplantation, we present a risk assessment for PERV infection, and conclude that the formerly high risk has been reduced to a moderate level. Advances in gene editing, and more broadly in the field, may make it more likely than ever before that bioartificial organs will alleviate the suffering of patients with organ failure.
Collapse
Affiliation(s)
- Zorina Pitkin
- Organogenesis Inc., 150 Dan Road, Canton, MA 02021, USA.
| |
Collapse
|