1
|
Jay JW, Palackic A, Prasai A, Seigel Q, Siddiqui R, Bergman I, Wolf SE, Wilkerson MG, El Ayadi A. Photoactivated rose bengal mitigates a fibrotic phenotype and improves cutaneous wound healing in full-thickness injuries. Wound Repair Regen 2024; 32:758-769. [PMID: 39109695 DOI: 10.1111/wrr.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 09/21/2024]
Abstract
Healing of deep cutaneous wounds often results in detrimental sequelae, including painful and debilitating scars. Current therapies for full-thickness injuries that target specific phases of wound healing have moderate success; however, full resolution remains incomplete and negative consequences persist if skin homeostasis is not achieved. Photoactivated molecules can modulate cellular responses by generating reactive oxygen species and may provide a novel therapeutic option to improve wound healing. In the current study, we investigated the effects of Rose bengal (RB) dye in a preclinical model of full-thickness cutaneous injury. Monochromatic green light activates RB to generate ROS in the presence of oxygen, subsequently crosslinking collagen fibrils. In in vitro studies, we show that photoactivated RB is well tolerated by epidermal keratinocytes and dermal fibroblasts and can mitigate fibrotic signalling by downregulating collagen production. In a murine model of full-thickness injury, topically-applied and photoactivated RB closed wounds faster than control and vehicle treatments and showed significantly improved wound healing outcomes, including enhanced early granulation, better collagen organisation and increased vascularity in the presence of protracted tissue ROS. These data support an overall improved cutaneous wound healing profile after RB phototherapy and warrant further investigations into this versatile molecule.
Collapse
Affiliation(s)
- Jayson W Jay
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alen Palackic
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Quincy Seigel
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Raima Siddiqui
- School of Medicine, Texas College of Osteopathic Medicine, Fort Worth, Texas, USA
| | - Isabelle Bergman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael G Wilkerson
- Department of Dermatology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Wang P, Peng Z, Yu L, Liu Y, Wang H, Zhou Z, Liu H, Hong S, Nie Y, Deng Y, Liu Y, Xie J. Verteporfin-Loaded Bioadhesive Nanoparticles for the Prevention of Hypertrophic Scar. SMALL METHODS 2024; 8:e2301295. [PMID: 38084464 DOI: 10.1002/smtd.202301295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 08/18/2024]
Abstract
Hypertrophic scarring (HS) is a common skin injury complication with unmet needs. Verteporfin (VP) should be an ideal HS-targeted therapeutic drug due to its efficient fibrosis and angiogenesis inhibitory abilities. However, its application is restricted by its side effects such as dose-dependent cytotoxicity on normal cells. Herein, the bioadhesive nanoparticles encapsulated VP (VP/BNPs) are successfully developed to attenuate the side effects of VP and enhance its HS inhibition effects by limiting VP releasing slowly and stably in the lesion site but not diffusing easily to normal tissues. VP/BNPs displayed significant inhibition on the proliferation, migration, collagen deposition, and vessel formation of human hypertrophic scar fibroblasts (HSFBs) and dermal vascular endothelial cells (HDVECs). In a rat tail HS model, VP/BNPs treated HS exhibits dramatic scar repression with almost no side effects compared with free VP or VP-loaded non-bioadhesive nanoparticles (VP/NNPs) administration. Further immunofluorescence analysis on scar tissue serial sections validated VP/BNPs effectively inhibited the collagen deposition and angiogenesis by firmly confined in the scar tissue and persistently releasing VP targeted to nucleus Yes-associated protein (nYAP) of HSFBs and HDVECs. These findings collectively suggest that VP/BNPs can be a promising and technically advantageous agent for HS therapies.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhangwen Peng
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Liu Yu
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Yiling Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hanwen Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ziheng Zhou
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hengdeng Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Sheng Hong
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Yichu Nie
- Department of Translational medicine research institute, First People's Hospital of Foshan, No. 81, North Lingnan Road, Foshan, Guangdong, 528000, China
| | - Yang Deng
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Yang Liu
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Julin Xie
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| |
Collapse
|
3
|
Hundeshagen G, Blears E, Mertin V, Day AG, Palackic A, Tapking C, Haug V, Kneser U, Bliesener B, Panayi AC, Aballay A, Depret F, Stoppe C, Heyland DK. Administration and effects of beta blockers and oxandrolone in severely burned adults: a post hoc analysis of the RE-ENERGIZE trial. BURNS & TRAUMA 2024; 12:tkad063. [PMID: 38650969 PMCID: PMC11033841 DOI: 10.1093/burnst/tkad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/15/2023] [Accepted: 12/13/2023] [Indexed: 04/25/2024]
Abstract
Background Prospective randomized trials in severely burned children have shown the positive effects of oxandrolone (OX), beta blockers (BB) and a combination of the two (BBOX) on hypermetabolism, catabolism and hyperinflammation short- and long-term post-burn. Although data on severely burned adults are lacking in comparison, BB, OX and BBOX appear to be commonly employed in this patient population. In this study, we perform a secondary analysis of an international prospective randomized trial dataset to provide descriptive evidence regarding the current utilization patterns and potential treatment effects of OX, BB and BBOX. Methods The RE-ENERGIZE (RandomizEd Trial of ENtERal Glutamine to minimIZE Thermal Injury, NCT00985205) trial included 1200 adult patients with severe burns. We stratified patients according to their receipt of OX, BB, BBOX or none of these drugs (None) during acute hospitalization. Descriptive statistics describe the details of drug therapy and unadjusted analyses identify predisposing factors for drug use per group. Association between OX, BB and BBOX and clinical outcomes such as time to discharge alive and 6-month mortality were modeled using adjusted multivariable Cox regressions. Results More than half of all patients in the trial received either OX (n = 138), BB (n = 293) or BBOX (n = 282), as opposed to None (n = 487, 40.6%). Per study site and geographical region, use of OX, BB and BBOX was highly variable. Predisposing factors for the use of OX, BB and BBOX included larger total body surface area (TBSA) burned, higher acute physiology and chronic health evaluation (APACHE) II scores on admission and younger patient age. After adjustment for multiple covariates, the use of OX was associated with a longer time to discharge alive [hazard ratio (HR) 0.62, confidence interval (CI) (0.47-0.82) per 100% increase, p = 0.001]. A higher proportion of days on BB was associated with lower in-hospital-mortality (HR: 0.5, CI 0.28-0.87, p = 0.015) and 6-month mortality (HR: 0.44, CI 0.24-0.82, p = 0.01). Conclusions The use of OX, BB and BBOX is common within the adult burn patient population, with its use varying considerably across sites worldwide. Our findings found mixed associations between outcomes and the use of BB and OX in adult burn patients, with lower acute and 6-month-mortality with BB and longer times to discharge with OX. Further research into these pharmacological modulators of the pathophysiological response to severe burn injury is indicated.
Collapse
Affiliation(s)
- Gabriel Hundeshagen
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071 Ludwigshafen, Germany
| | - Elisabeth Blears
- Department of Plastic Surgery, Bayview Medical Center, Johns Hopkins University, 4940 Eastern Ave, Baltimore 21224, MD, USA
| | - Viktoria Mertin
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071 Ludwigshafen, Germany
| | - Andrew G Day
- Kingston General Health Research Institute, Kingston Health Sciences Centre, 76 Stuart Street, Kingston, Ontario, K7L 2V7, Canada
| | - Alen Palackic
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071 Ludwigshafen, Germany
| | - Christian Tapking
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071 Ludwigshafen, Germany
| | - Valentin Haug
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071 Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071 Ludwigshafen, Germany
| | - Björn Bliesener
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071 Ludwigshafen, Germany
| | - Adriana C Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071 Ludwigshafen, Germany
| | - Ariel Aballay
- Department of Plastic Surgery, Bayview Medical Center, Johns Hopkins University, 4940 Eastern Ave, Baltimore 21224, MD, USA
| | - Francois Depret
- Department of Anaesthesiology, Intensive Care Medicine and Burn center, Saint-Louis Hospital, 1 avenue Claude-Vellefaux, 75010, Asistance Publique Hôpitaux de Paris, Paris Cité University, France
| | - Christian Stoppe
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105 Kiel, Germany
- University Hospital, Würzburg, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
- Departments of Cardiac Anesthesiology & Intensive Care Medicine, Charité Berlin, Augustenburger Platz 1 | 13353, Berlin, Germany
| | - Daren K Heyland
- Department of Critical Care Medicine, Queen’s University, 76 Stuart Street, Kingston, K7L 2V7 Ontario, Canada
| |
Collapse
|
4
|
Li C, Solish M, Rogers AD. Evaluation of patient-reported outcome measures in burn-specific tools: A systematic review. Burns 2024; 50:1-12. [PMID: 38040617 DOI: 10.1016/j.burns.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION Patient-reported outcome measures (PROMs) are now well-established tools to evaluate the quality of patient-centred care. Due to the multi-faceted and multi-disciplinary nature of the practice of burn care, as well as the range of significant potential sequelae, PROM's should form a fundamental component of burn quality improvement programs. We aim to 1. Explore biological, psychological, and social considerations that are currently listed in burn-specific PROM tools, as well as their efficacy, 2. Evaluate biological, psychological, and social factors that are considered in new burn-specific PROM tools or those under development, and 3. Identify any opportunities with respect to burn-specific PROM tools, in order to inform future investigation in this area. METHODS A search was performed of MEDLINE (Ovid), EMBASE, CINAHL, and the Cochrane Library databases. Two independent reviewers screened article titles/abstracts and then the full texts using Covidence. All studies were graded independently according to the Quality Rating Scheme for Studies and Other Evidences. RESULTS The initial search yielded 552 references. Based on ab initio inclusion and exclusion criteria, 133 full-text studies were assessed for eligibility, and 21 articles were ultimately included in the systematic review. Due to study heterogeneity, a qualitative synthesis was conducted. Existing burn-specific PROMs covered a range of biological, psychological, and social factors affecting adult and paediatric patients with burn injury, but several studies required additional PROMs for a thorough evaluation. Burn-specific PROM tools under development are poised to fill this deficit. CONCLUSION Major burn injuries are a unique form of trauma, requiring coordinated management that considers numerous factors not relevant to other patient populations. Further research is necessary to validate existing burn-specific PROM tools and to develop more comprehensive burn-specific PROM measures that more comprehensively incorporate the bio-psycho-social model of health.
Collapse
Affiliation(s)
- Calandra Li
- Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Max Solish
- Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Alan D Rogers
- Temerty Faculty of Medicine, University of Toronto, Ontario, Canada; Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Ontario, Canada; Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, University of Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Lee AR, Lee SY, Choi JW, Um IG, Na HS, Lee JH, Cho ML. Establishment of a humanized mouse model of keloid diseases following the migration of patient immune cells to the lesion: Patient-derived keloid xenograft (PDKX) model. Exp Mol Med 2023; 55:1713-1719. [PMID: 37524866 PMCID: PMC10474158 DOI: 10.1038/s12276-023-01045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/24/2023] [Indexed: 08/02/2023] Open
Abstract
Keloid disorder is an abnormal fibroproliferative reaction that can occur on any area of skin, and it can impair the quality of life of affected individuals. To investigate the pathogenesis and develop a treatment strategy, a preclinical animal model of keloid disorder is needed. However, keloid disorder is unique to humans, and the development of an animal model of keloid disorder is highly problematic. We developed the patient-derived keloid xenograft (PDKX), which is a humanized mouse model, and compared it to the traditional mouse xenograft model (transplantation of only keloid lesions). To establish the PDKX model, peripheral mononuclear cells (PBMCs) from ten keloid patients or five healthy control subjects were injected into NOD/SCID/IL-2Rγnull mice, and their keloid lesions were grafted onto the back after the engraftment of immune cells (transplantation of keloid lesions and KP PBMCs or HC PBMCs). Four weeks after surgery, the grafted keloid lesion was subjected to histologic evaluation. Compared to the traditional model, neotissue formed along the margin of the grafted skin, and lymphocyte infiltration and collagen synthesis were significantly elevated in the PDKX model. The neotissue sites resembled the margin areas of keloids in several respects. In detail, the levels of human Th17 cells, IL-17, HIF-1a, and chemokines were significantly elevated in the neotissue of the PDKX model. Furthermore, the weight of the keloid lesion was increased significantly in the PDKX model, which was due to the proinflammatory microenvironment of the keloid lesion. We confirmed that our patient-derived keloid xenograft (PDKX) model mimicked keloid disorder by recapitulating the in vivo microenvironment. This model will contribute to the investigation of cellular mechanisms and therapeutic treatments for keloid disorders.
Collapse
Affiliation(s)
- A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In Gyu Um
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Ho Lee
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
6
|
Jalkh APC, Eastmond AK, Shetty C, Rizvi SMHA, Sharaf J, Williams KAD, Tariq M, Acharekar MV, Guerrero Saldivia SE, Unnikrishnan SN, Chavarria YY, Akindele AO, Hamid P. Oxandrolone Efficacy in Wound Healing in Burned and Decubitus Ulcer Patients: A Systematic Review. Cureus 2022; 14:e28079. [PMID: 36127967 PMCID: PMC9477554 DOI: 10.7759/cureus.28079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Wounds with delayed or impaired healing represent a considerable challenge in medical practice. These patients develop a sustained hypermetabolic and catabolic state, directly impacting the wound healing process. The use of oxandrolone has been studied to control this metabolic imbalance and protect lean body mass as a beneficial resource in wound healing. This systematic review aims to analyze previously conducted randomized controlled trials to evaluate the evidence of the applicability of oxandrolone therapy. We compared its use in adult patients with burns and adult patients with pressure ulcers in terms of wound healing and healing time of the skin graft donor site in days. The digital searches were done from March 23-28, 2022, within the databases: Google Scholar, PubMed/MEDLINE, and EBSCO (Elton B. Stephens Company). Data from six studies were analyzed and included in this review. Analysis of the available data demonstrated a significant advantage in skin healing using oxandrolone in adult burn patients as an adjunct. For adult patients with pressure ulcers, the drug showed no benefit on wound healing and skin graft site healing. Importantly, we found only one study evaluating the use of oxandrolone in patients with decubitus ulcers that met our eligibility criteria, and the certainty of the evidence was low. Thus, further prospective randomized studies with larger samples and standard wound care protocols are needed to produce more solid results, allowing more definitive conclusions to be made on this theme.
Collapse
|
7
|
Ud-Din S, Bayat A. Controlling Inflammation Pre-Emptively or at the Time of Cutaneous Injury Optimises Outcome of Skin Scarring. Front Immunol 2022; 13:883239. [PMID: 35711461 PMCID: PMC9197255 DOI: 10.3389/fimmu.2022.883239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation plays an active role during the wound healing process. There is a direct association between the extent of injury as well as inflammation and the amount of subsequent cutaneous scarring. Evidence to date demonstrates that high levels of inflammation are associated with excessive dermal scarring and formation of abnormal pathological scars such as keloids and hypertrophic scars. In view of the multiple important cell types being involved in the inflammatory process and their influence on the extent of scar formation, many scar therapies should aim to target these cells in order to control inflammation and by association help improve scar outcome. However, most current treatment strategies for the management of a newly formed skin scar often adopt a watch-and-wait approach prior to commencing targeted anti-inflammatory therapy. Moreover, most of these therapies have been evaluated in the remodelling phase of wound healing and the evaluation of anti-inflammatory treatments at earlier stages of healing have not been fully explored and remain limited. Taken together, in order to minimise the risk of developing a poor scar outcome, it is clear that adopting an early intervention prior to skin injury would be optimal, however, the concept of pre-emptively priming the skin prior to injury has not yet been thoroughly evaluated. Therefore, the aim of this review was to evaluate the available literature regarding scar therapies that aim to target inflammation which are commenced prior to when a scar is formed or immediately after injury, with a particular focus on the role of pre-emptive priming of skin prior to injury in order to control inflammation for the prevention of poor scarring outcome.
Collapse
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research, National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom.,Medical Research Council - South Africa (MRC-SA) Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Menchaca AD, Style CC, Olutoye OO. A Review of Hypertrophic Scar and Keloid Treatment and Prevention in the Pediatric Population: Where Are We Now? Adv Wound Care (New Rochelle) 2022; 11:255-279. [PMID: 34030473 DOI: 10.1089/wound.2021.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Significance: This body of work gives a concise and comprehensive overview for the clinician and scientist on the latest treatment modalities for hypertrophic scars (HTS) and keloids in the pediatric population, as well as the most promising methods of prevention currently being investigated. This review will serve as a guide to the clinician for treatment selection and as an efficient tool for the scientist to achieve a comprehensive overview of the scientific literature to guide their future experiments aimed at pathologic scar prevention. Recent Advances: Current studies in the literature suggest carbon dioxide (CO2) laser and E-light (bipolar radiofrequency, intense pulsed light, and cooling) are two of the most effective treatment modalities for HTS, while surgical excision+CO2 laser+triamcinolone injection was one of the most successful treatments for keloids. In animal models, drug impregnated electrospun nanofiber dressings offer encouraging results for HTS prevention, while Kelulut honey showed promising results for keloid prevention. Critical Issues: Treatment outcome reproducibility is hindered by small cohorts of patients, inadequate-follow up, and variability in assessment tools. Prevention studies show multiple ways of achieving the same result, yet fall short of complete prevention. Furthermore, some studies that have purported full prevention have not been validated. Future Directions: To establish a standard of care, large clinical trials of the most successful modalities in small cohorts are needed. The key for prevention will be validation in animal models of the most successful methods, followed by translational and clinical studies.
Collapse
Affiliation(s)
- Alicia D. Menchaca
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
- Department of General Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Candace C. Style
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Oluyinka O. Olutoye
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Abstract
ABSTRACT Management of the metabolic responses to severe burn injury is recognized as a fundamental part of burn care. Definition of burn hypermetabolism is being refined to subcellular and genomic levels, and treatment concepts are need to be refined into increasingly sophisticated strategies.
Collapse
Affiliation(s)
- David Herndon
- From the Joseph M. Still Research Foundation, Inc., Augusta, GA
| | | | | |
Collapse
|
10
|
Comments on 'Effectiveness and safety of ablative fractional CO 2 laser for the treatment of burn scars: A case-control study'. Burns 2022; 48:467-468. [PMID: 34393036 DOI: 10.1016/j.burns.2021.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
|
11
|
Coentro JQ, Di Nubila A, May U, Prince S, Zwaagstra J, Järvinen TAH, Zeugolis D. Dual drug delivery collagen vehicles for modulation of skin fibrosis in vitro. Biomed Mater 2022; 17. [PMID: 35176732 DOI: 10.1088/1748-605x/ac5673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Single molecule drug delivery systems have failed to yield functional therapeutic outcomes, triggering investigations into multi-molecular drug delivery vehicles. In the context of skin fibrosis, although multi-drug systems have been assessed, no system has assessed molecular combinations that directly and specifically reduce cell proliferation, collagen synthesis and transforming growth factor β1 (TGFβ1) expression. Herein, a core-shell collagen type I hydrogel system was developed for the dual delivery of a TGFβ trap, a soluble recombinant protein that inhibits TGFβ signalling, and Trichostatin A (TSA), a small molecule inhibitor of histone deacetylases. The antifibrotic potential of the dual delivery system was assessed in an in vitro skin fibrosis model induced by macromolecular crowding (MMC) and TGFβ1. SDS-PAGE and HPLC analyses revealed that ~ 50 % of the TGFβ trap and ~ 30 % of the TSA were released from the core and shell compartments, respectively, of the hydrogel system after 10 days (longest time point assessed) in culture. As a direct consequence of this slow release, the core (TGFβ trap) / shell (TSA) hydrogel system induced significantly (p < 0.05) lower than the control group (MMC and TGFβ1) collagen type I deposition (assessed via SDS-PAGE and immunocytochemistry), α smooth muscle actin (αSMA) expression (assessed via immunocytochemistry) and cellular proliferation (assessed via DNA quantification) and viability (assessed via calcein AM and ethidium homodimer-I staining) after 10 days in culture. On the other hand, direct TSA-TGFβ supplementation induced the lowest (p < 0.05) collagen type I deposition, αSMA expression and cellular proliferation and viability after 10 days in culture. Our results illustrate the potential of core-shell collagen hydrogel systems for sustained delivery of antifibrotic molecules.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Alessia Di Nubila
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Ulrike May
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - Stuart Prince
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - John Zwaagstra
- Human Health Therapeutics Research Centre, National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, K1A 0R6, CANADA
| | - Tero A H Järvinen
- Faculty of Medicine & Health Technology, Tampere University, Faculty of Medicine & Health Technology, Tampere, 33014, FINLAND
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, University College Dublin, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, Dublin, 4, IRELAND
| |
Collapse
|
12
|
Fahy EJ, Griffin M, Lavin C, Abbas D, Longaker MT, Wan D. The Adrenergic System in Plastic and Reconstructive Surgery: Physiology and Clinical Considerations. Ann Plast Surg 2021; 87:e62-e70. [PMID: 33833152 DOI: 10.1097/sap.0000000000002706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The primary organ systems and tissues concerning plastic and reconstructive surgery include the integument, vasculature, subcutis, and peripheral nerves, because these may individually or collectively be injured requiring reconstruction, or indeed be used in reconstruction themselves through grafts, flaps, or anastomoses. Adrenergic receptors are present throughout these anatomic components on the vasculature, adipose, platelets, immune cells, keratinocytes, melanocytes, fibroblasts, peripheral nerves, and tendons. Herein, the influence of adrenergic signaling on the physiology of anatomic components related to plastic surgery is discussed, along with clinical considerations of this systems involvement in procedures, such as free flap reconstruction, skin grafting, fat grafting, and other areas relevant to plastic and reconstructive surgery. Current evidence as well as potential for further investigation is discussed.
Collapse
Affiliation(s)
- Evan J Fahy
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| | - Michelle Griffin
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| | - Christopher Lavin
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| | - Darren Abbas
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| | | | - Derrick Wan
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| |
Collapse
|
13
|
Carrougher GJ, McMullen K, Amtmann D, Wolfe AE, Tenney D, Schneider JC, Yeakley J, Holavanahalli RK, Patterson L, Madison C, Gibran NS. "Living Well" After Burn Injury: Using Case Reports to Illustrate Significant Contributions From the Burn Model System Research Program. J Burn Care Res 2021; 42:398-407. [PMID: 32971531 PMCID: PMC10044562 DOI: 10.1093/jbcr/iraa161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Burn Model System (BMS) program of research has been funded since 1993 by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR). The overarching aim of this program is to improve outcomes and quality of life for people with burns in the areas of health and function, employment, and community living and participation. This review reports on BMS contributions that have affected the lives of individuals with a significant burn injury using case reports to associate BMS contributions with recovery. In January 2020, current BMS grantee researchers assessed peer-reviewed BMS publications from 1994 to 2020. Using case report methodology, contributions were linked to three individuals treated at one of the four Burn Model System institutions. With over 25 years of NIDILRR funding, unique BMS contributions to patient recovery were identified and categorized into one of several domains: treatment, assessment measures, sequelae, peer support, employment, and long-term functional outcomes. A second review for significant results of BMS research that add to the understanding of burn injury, pathophysiology, and recovery research was identified and categorized as injury recovery research. The case study participants featured in this review identified select NIDILRR research contributions as having direct, personal benefit to their recovery. The knowledge generation and clinical innovation that this research program has contributed to our collective understanding of recovery after burn injury is considerable. Using case study methodology with three adult burn survivors, we highlight the impact and individual significance of program findings and reinforce the recognition that the value of any clinical research must have relevance to the lives of the study population.
Collapse
Affiliation(s)
| | - Kara McMullen
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Dagmar Amtmann
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Audrey E Wolfe
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Jeffrey C Schneider
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Loren Patterson
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Nicole S Gibran
- Department of Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Wen JJ, Williams TP, Cummins CB, Colvill KM, Radhakrishnan GL, Radhakrishnan RS. Effect of Mitochondrial Antioxidant (Mito-TEMPO) on Burn-Induced Cardiac Dysfunction. J Am Coll Surg 2021; 232:642-655. [PMID: 33421567 PMCID: PMC8753741 DOI: 10.1016/j.jamcollsurg.2020.11.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Imbalance of oxidants/antioxidants results in heart failure, contributing to mortality after burn injury. Cardiac mitochondria are a prime source of reactive oxygen species (ROS), and a mitochondrial-specific antioxidant may improve burn-induced cardiomyopathy. We hypothesize that the mitochondrial-specific antioxidant, Triphenylphosphonium chloride (Mito-TEMPO), could protect cardiac function after burn. STUDY DESIGN Male rats had a 60% total body surface area (TBSA) scald burn injury and were treated with/without Mito-TEMPO (7 mg/kg-1, intraperitoneal) and harvested at 24 hours post-burn. Echocardiography (ECHO) was used for measurement of heart function. Masson Trichrome and hematoxylin and eosin (H & E) staining were used for cardiac fibrosis and immune response. Qualitative polymerase chain reaction (qPCR) was used for mitochondrial DNA replication and gene expression. RESULTS Burn-induced cardiac dysfunction, fibrosis, and mitochondrial damage were assessed by measurement of mitochondrial function, DNA replication, and DNA-encoded electron transport chain-related gene expression. Mito-TEMPO partially improved the abnormal parameters. Burn-induced cardiac dysfunction was associated with crosstalk between the NFE2L2-ARE pathway, PDE5A-PKG pathway, PARP1-POLG-mtDNA replication pathway, and mitochondrial SIRT signaling. CONCLUSIONS Mito-TEMPO reversed burn-induced cardiac dysfunction by rescuing cardiac mitochondrial dysfunction. Mitochondria-targeted antioxidants may be an effective therapy for burn-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jake J Wen
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Taylor P Williams
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Claire B Cummins
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Kayla M Colvill
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | | | - Ravi S Radhakrishnan
- Department of Surgery, University of Texas Medical Branch, Galveston, TX; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
15
|
Walczak J, Bunn C, Saini P, Liu YM, Baldea AJ, Muthumalaiappan K. Transient Improvement in Erythropoiesis Is Achieved Via the Chaperone AHSP With Early Administration of Propranolol in Burn Patients. J Burn Care Res 2021; 42:311-322. [PMID: 32842148 DOI: 10.1093/jbcr/iraa150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Burn patients experience erythropoietin resistant anemia in which early commitment and late maturation of erythroblasts are defective. The authors previously showed that propranolol (Prop) treatment restores erythroid committed progenitors, but terminal maturation remains impaired. Hemoglobinization and maturation occur during terminal erythropoiesis and these processes are aided by an erythroblast intrinsic functional protein called alpha-hemoglobin stabilizing protein (AHSP). The authors evaluated the role of AHSP in PBMC- (peripheral blood mono nuclear cell) derived erythroblasts and the implications of Prop in burn patients. Blood samples were collected at three time points from 17 patients receiving standard burn care (SBC) or Prop. Five healthy volunteers provided control plasma (CP). PBMCs were placed in biphasic cultures with 5% autologous plasma (BP) or CP. Erythroblasts were harvested during mid and late maturation stages; the percentage of AHSP+ erythroblasts, AHSP expression, and relative distribution of reticulocytes and polychromatophilic erythroblasts (PolyE) were determined by cytometry. During the second time point (7-10 days postburn), Prop cohort required 35% less transfusions. At mid maturation, PBMCs from Prop-treated patients cultured in BP had 33% more AHSP+ erythroblasts and 40% more AHSP expression compared with SBC. Furthermore, at late maturation, Prop had 50% more reticulocytes and 30% less PolyEs in CP vs BP compared with SBC (11% and 6%, respectively). AHSP is positively associated with late-stage maturation of PBMC-derived erythroblasts in the presence of CP. Albeit transiently, this is more pronounced in Prop than SBC. Early administration of propranolol in burn patients supports erythropoiesis via the chaperone AHSP.
Collapse
Affiliation(s)
- Julia Walczak
- Burn and Shock Trauma Research Institute, Maywood, Illinois
| | - Corinne Bunn
- Burn and Shock Trauma Research Institute, Maywood, Illinois.,Department of Surgery, Loyola University Chicago, Maywood, Illinois
| | - Pravesh Saini
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Yuk Ming Liu
- Department of Surgery, Loyola University Chicago, Maywood, Illinois
| | - Anthony J Baldea
- Department of Surgery, Loyola University Chicago, Maywood, Illinois
| | - Kuzhali Muthumalaiappan
- Burn and Shock Trauma Research Institute, Maywood, Illinois.,Department of Surgery, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
16
|
Kemp Bohan PM, Cooper LE, Lu KN, Raper DM, Batchinsky M, Carlsson AH, Cancio LC, Chan RK. Fractionated Ablative Carbon Dioxide Laser Therapy Decreases Ultrasound Thickness of Hypertrophic Burn Scar: A Prospective Process Improvement Initiative. Ann Plast Surg 2021; 86:273-278. [PMID: 32826444 DOI: 10.1097/sap.0000000000002517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Carbon dioxide (CO2) laser treatment is routinely used to treat hypertrophic burn scars (HBS). Although prior research has documented subjective improvement in HBS after treatment, there is little data evaluating objective changes in scar characteristics after therapy. The aim of our process improvement project was to evaluate changes to scar thickness (ST) using high-frequency ultrasound in patients with HBS undergoing CO2 laser therapy. METHODS Ultrasound measurements of ST were obtained from patients with HBS before initial and at each subsequent treatment. ST, reduction in ST per treatment, and percentage reduction in ST from baseline were tabulated. Post hoc analyses examining the effect of initial ST and scar maturity on outcome were performed. First, patients were grouped by baseline ST into thicker (group 1, initial ST ≥ median value) and thinner (group 2, initial ST < median value) scar groups. Second, patients were divided into quartiles based on time from injury to treatment. Outcomes at each time point were compared with either Mann-Whitney U or Kruskal-Wallis tests, with Bonferonni corrections performed for post hoc subgroup analyses. Significance was set at P < 0.05. RESULTS Twenty-one consecutive patients with HBS treated with CO2 laser were included. All patients completed 1 or more treatment, 48% completed 2 or more treatments, and 28% completed 3 treatments. Median initial ST was 0.71 cm (0.44-0.98 cm), and median scar maturity was 7.5 months (4.9-9.8 months). Overall, ST decreased over the treatment course (P < 0.001), with post hoc analysis demonstrating that 2 treatments were required to achieve a significant ST reduction (P < 0.01). On subgroup analysis comparing initial ST, ST decreased significantly in group 1 (thicker scars) overall (P < 0.001) but not in group 2 (P = 0.109). ST reduction was greatest after 1 treatment in group 1 (P = 0.022) and group 2 (P = 0.061). Percent reduction was greater in group 1 relative to group 2 after 1 treatment (P = 0.016). On subgroup analysis of scar maturity, there were no significant differences in either baseline ST or ST at any subsequent visit. CONCLUSIONS Fractionated ablative CO2 laser treatment improved ST after 1 to 2 treatments. Patients with thicker scars demonstrated greater ST reduction than those with thinner scars. Ultrasound adequately assessed treatment response.
Collapse
Affiliation(s)
| | | | | | - David M Raper
- Department of Oral and Maxillofacial Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX
| | | | | | | | | |
Collapse
|
17
|
Alkhalil A, Ball RL, Garg G, Day A, Carney BC, Kumar R, Hammamieh R, Moffatt LT, Shupp JW. Cutaneous Thermal Injury Modulates Blood and Skin Metabolomes Differently in a Murine Model. J Burn Care Res 2020; 42:727-742. [PMID: 33301570 PMCID: PMC8335952 DOI: 10.1093/jbcr/iraa209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As the field of metabolomics develops further, investigations of how the metabolome is affected following thermal injury may be helpful to inform diagnostics and guide treatments. In this study, changes to the metabolome were tested and validated in a murine burn injury model. After a 30% total body surface scald injury or sham procedure sera and skin biopsies were collected at 1, 2, 6, or 24 hr. Burn-specific changes in the metabolome were detected compared to sham animals. The sera metabolome exhibited a more rapid response to burn injury than that of the skin and it peaked more proximal to injury (6 vs 24 hr). Progression of metabolic response in the skin was less synchronous and showed a higher overlap of the significantly modified metabolites (SMMs) among tested time-points. Top affected pathways identified by SMMs of skin included inositol phosphate metabolism, ascorbate and alderate metabolism, caffeine metabolism, and the pentose phosphate pathway. Future research is warranted in human and larger animal models to further elucidate the role of metabolomic perturbations and the pathophysiology following burn injury.
Collapse
Affiliation(s)
- Abdulnaser Alkhalil
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Robert L Ball
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,The Burn Center, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Gaurav Garg
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,The Burn Center, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Anna Day
- The Oak Ridge Institute for Science and Education, Fort Detrick, Maryland
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, District of Columbia
| | - Raina Kumar
- Advanced Biomedical Computational Science, Frederick National Lab for Cancer Research, Maryland.,Integrative Systems Biology, US Army Center for Environmental Health, Center for Environmental Health, Fort Detrick, Maryland
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health, Center for Environmental Health, Fort Detrick, Maryland
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, District of Columbia
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,The Burn Center, MedStar Washington Hospital Center, Washington, District of Columbia.,Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
18
|
Wang ZC, Zhao WY, Cao Y, Liu YQ, Sun Q, Shi P, Cai JQ, Shen XZ, Tan WQ. The Roles of Inflammation in Keloid and Hypertrophic Scars. Front Immunol 2020; 11:603187. [PMID: 33343575 PMCID: PMC7746641 DOI: 10.3389/fimmu.2020.603187] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/06/2020] [Indexed: 01/13/2023] Open
Abstract
The underlying mechanisms of wound healing are complex but inflammation is one of the determining factors. Besides its traditional role in combating against infection upon injury, the characteristics and magnitude of inflammation have dramatic impacts on the pathogenesis of scar. Keloids and hypertrophic scars are pathological scars that result from aberrant wound healing. They are characterized by continuous local inflammation and excessive collagen deposition. In this review, we aim at discussing how dysregulated inflammation contributes to the pathogenesis of scar formation. Immune cells, soluble inflammatory mediators, and the related intracellular signal transduction pathways are our three subtopics encompassing the events occurring in inflammation associated with scar formation. In the end, we enumerate the current and potential medicines and therapeutics for suppressing inflammation and limiting progression to scar. Understanding the initiation, progression, and resolution of inflammation will provide insights into the mechanisms of scar formation and is useful for developing effective treatments.
Collapse
Affiliation(s)
- Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Cao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Qi Liu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qihang Sun
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Qin Cai
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Z Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Blears E, Sommerhalder C, Toliver-Kinsky T, Finnerty CC, Herndon DN. Current problems in burn immunology. Curr Probl Surg 2020; 57:100779. [PMID: 32507131 DOI: 10.1016/j.cpsurg.2020.100779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Elizabeth Blears
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | | | - Tracy Toliver-Kinsky
- Department of Anesthesiology, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX.
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX; Shriners Hospitals for Children, Galveston, TX
| | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Thermal injury is a leading cause of morbidity and mortality in children. This review highlights the current management of thermal injury and its complications. RECENT FINDINGS Many recent advances in burn care have improved the outcomes of patients with thermal injury; however, variability does exist, and there are many opportunities for improvement. This review will highlight the complexity of issues encountered along the continuum of care for thermal injury patients. Accurate estimation of total burn surface area (TBSA) of a burn continues to be a challenge in pediatric patients. Variability continues to exist surrounding the management of burn resuscitation and complex wounds. Children with extensive burns have profound immune and metabolic changes that can lead to multiple complications, including infections, growth arrest, and loss of lean body mass. Standardization in measurements related to quality of life and psychological stress following pediatric thermal injury is much needed. SUMMARY The care of pediatric patients with thermal injury is complex and multifaceted. This review highlights the most recent advances in pediatric burn care.
Collapse
|
21
|
Moffatt LT, Madrzykowski D, Gibson ALF, Powell HM, Cancio LC, Wade CE, Choudhry MA, Kovacs EJ, Finnerty CC, Majetschak M, Shupp JW. Standards in Biologic Lesions: Cutaneous Thermal Injury and Inhalation Injury Working Group 2018 Meeting Proceedings. J Burn Care Res 2020; 41:604-611. [PMID: 32011688 PMCID: PMC7195554 DOI: 10.1093/jbcr/irz207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
On August 27 and 28, 2018, the American Burn Association, in conjunction with Underwriters Laboratories, convened a group of experts on burn and inhalation injury in Washington, DC. The goal of the meeting was to identify and discuss the existing knowledge, data, and modeling gaps related to understanding cutaneous thermal injury and inhalation injury due to exposure from a fire environment, and in addition, address two more areas proposed by the American Burn Association Research Committee that are critical to burn care but may have current translational research gaps (inflammatory response and hypermetabolic response). Representatives from the Underwriters Laboratories Firefighter Safety Research Institute and the Bureau of Alcohol, Tobacco, Firearms and Explosives Fire Research Laboratory presented the state of the science in their fields, highlighting areas that required further investigation and guidance from the burn community. Four areas were discussed by the full 24 participant group and in smaller groups: Basic and Translational Understanding of Inhalation Injury, Thermal Contact and Resulting Injury, Systemic Inflammatory Response and Resuscitation, and Hypermetabolic Response and Healing. A primary finding was the need for validating historic models to develop a set of reliable data on contact time and temperature and resulting injury. The working groups identified common areas of focus across each subtopic, including gaining an understanding of individual response to injury that would allow for precision medicine approaches. Predisposed phenotype in response to insult, the effects of age and sex, and the role of microbiomes could all be studied by employing multi-omic (systems biology) approaches.
Collapse
Affiliation(s)
- Lauren T Moffatt
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| | | | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Heather M Powell
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Research Department, Shriners Hospitals for Children, Cincinnati, OH
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX
| | - Charles E Wade
- Center for Translational Injury Research (CeTIR), Department of Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Mashkoor A Choudhry
- Department of Surgery, Burn & Shock Trauma Research Institute, Health Sciences Division, Loyola University, Maywood, IL
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora CO
| | - Celeste C Finnerty
- Departments of Surgery and Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch and Shriners Burns Hospital, Galveston TX
| | - Matthias Majetschak
- Departments of Surgery and Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jeffrey W Shupp
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
- The Burn Center, MedStar Washington Hospital Center, Washington DC
- Department of Surgery, Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
22
|
Song J, Li X, Li J. Emerging evidence for the roles of peptide in hypertrophic scar. Life Sci 2019; 241:117174. [PMID: 31843531 DOI: 10.1016/j.lfs.2019.117174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
Hypertrophic scar is a dermal fibroproliferative disorder characterized by excess collagen deposition. There are many existing treatment modalities, but none works perfectly in all individuals. Recently, evidence is increasing that peptides can play crucial roles in the prevention or treatment of hypertrophic scar. The peptides may be derived from growth factors, hormones, and intracellular products of proteolysis. In vitro and in vivo studies have revealed that a number of peptides, usually topically applied, have beneficial effects on fibroblasts in rat, mouse, hamster, pig and rabbit scar models. The length of such peptides typically ranges between 10 and 15 amino acids (aa). Peptides may reduce scar progenitors, prevent excessive scarring, decrease scar growth, speed re-epithelialization and promote scar maturation through multiple mechanisms. They may target TGF-β signaling, fibroblast function or collagen modulation, inflammation, renin angiotensin system, gap junction and other pathways. However, there is a paucity of evidence regarding specific binding sites for these peptides in scar models. Here, we review current research progress on the roles of peptides and underlying mechanisms in hypertrophic scar. We also discuss the clinical potential of peptides as therapeutic agents in scarring. Finally, the functions of several peptide-related compounds in hypertrophic scar are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Dermatology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Xue Li
- Department of Dermatology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China.
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China.
| |
Collapse
|
23
|
|
24
|
Spotlight in Plastic Surgery. Plast Reconstr Surg 2019. [DOI: 10.1097/prs.0000000000005517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|