1
|
Dou X, Zhao Y, Li M, Chen Q, Yamaguchi Y. Raman imaging diagnosis of the early stage differentiation of mouse embryonic stem cell (mESC). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117438. [PMID: 31377684 DOI: 10.1016/j.saa.2019.117438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 05/19/2023]
Abstract
Raman microspectroscopy as a non-invasive and label-free technique was applied to diagnose the early stage differentiation of mouse embryonic stem cells. The differentiated and undifferentiated embryonic bodies (EBs) were cultured using handing drop method by the control of Leukemia Inhibitory Factor (LIF). Raman spectra of the periphery cells of differentiated EBs (PrE cells) and those of the interior of undifferentiated EBs (ES cells) were obtained to diagnose the stem cells of different differentiation. It was found from the spectra that the protein content increased as the cells differentiated. Principal component analysis (PCA) was carried out to further analyze the differences between ES cells and PrE cells. The first three principle components contained 98.19% from the total variance. Characteristic bands of ES and PrE cells were chosen to acquire Raman images of two cells according to the results of PCA. In the Raman images, PrE cells had a clear and bright outline in the peripheral areas while ES cells were difficult to identify, this could be a distinct characteristic to discriminate them. The result of the Raman images was consistent with the biological agreement that the differentiated cells were distributed around the periphery.
Collapse
Affiliation(s)
- Xiaoming Dou
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yubin Zhao
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingda Li
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qinmiao Chen
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yoshinori Yamaguchi
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Yamaguchi T, Matsuzaki J, Katsuda T, Saito Y, Saito H, Ochiya T. Generation of functional human hepatocytes in vitro: current status and future prospects. Inflamm Regen 2019; 39:13. [PMID: 31308858 PMCID: PMC6604181 DOI: 10.1186/s41232-019-0102-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Liver and hepatocyte transplantation are the only effective therapies for late-stage liver diseases, in which the liver loses its regenerative capacity. However, there is a shortage of donors. As a potential alternative approach, functional hepatocytes were recently generated from various cell sources. Analysis of drug metabolism in the human liver is important for drug development. Consequently, cells that metabolize drugs similar to human primary hepatocytes are required. This review discusses the current challenges and future perspectives concerning hepatocytes and hepatic progenitor cells that have been reprogrammed from various cell types, focusing on their functions in transplantation models and their ability to metabolize drugs.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- 1Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512 Japan.,2Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Juntaro Matsuzaki
- 2Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan.,3Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Takeshi Katsuda
- 2Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yoshimasa Saito
- 1Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512 Japan
| | - Hidetsugu Saito
- 1Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512 Japan
| | - Takahiro Ochiya
- 2Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan.,4Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402 Japan
| |
Collapse
|
3
|
Michel SG, Madariaga MLL, Villani V, Shanmugarajah K. Current progress in xenotransplantation and organ bioengineering. Int J Surg 2014; 13:239-244. [PMID: 25496853 DOI: 10.1016/j.ijsu.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/30/2014] [Accepted: 12/07/2014] [Indexed: 12/25/2022]
Abstract
Organ transplantation represents a unique method of treatment to cure people with end-stage organ failure. Since the first successful organ transplant in 1954, the field of transplantation has made great strides forward. However, despite the ability to transform and save lives, transplant surgery is still faced with a fundamental problem the number of people requiring organ transplants is simply higher than the number of organs available. To put this in stark perspective, because of this critical organ shortage 18 people every day in the United States alone die on a transplant waiting list (U.S. Department of Health & Human Services, http://organdonor.gov/about/data.html). To address this problem, attempts have been made to increase the organ supply through xenotransplantation and more recently, bioengineering. Here we trace the development of both fields, discuss their current status and highlight limitations going forward. Ultimately, lessons learned in each field may prove widely applicable and lead to the successful development of xenografts, bioengineered constructs, and bioengineered xeno-organs, thereby increasing the supply of organs for transplantation.
Collapse
Affiliation(s)
- Sebastian G Michel
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA; Department of Cardiac Surgery, Ludwig-Maximilians-Universität München, Munich D-81377, Germany.
| | - Maria Lucia L Madariaga
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02129, USA
| | - Vincenzo Villani
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA
| | - Kumaran Shanmugarajah
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA; Division of Surgery, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
4
|
Corsini A, Ganey P, Ju C, Kaplowitz N, Pessayre D, Roth R, Watkins PB, Albassam M, Liu B, Stancic S, Suter L, Bortolini M. Current challenges and controversies in drug-induced liver injury. Drug Saf 2013. [PMID: 23137150 DOI: 10.2165/11632970-000000000-00000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current key challenges and controversies encountered in the identification of potentially hepatotoxic drugs and the assessment of drug-induced liver injury (DILI) are covered in this article. There is substantial debate over the classification of DILI itself, including the definition and validity of terms such as 'intrinsic' and 'idiosyncratic'. So-called idiosyncratic DILI is typically rare and requires one or more susceptibility factors in individuals. Consequently, it has been difficult to reproduce in animal models, which has limited the understanding of its underlying mechanisms despite numerous hypotheses. Advances in predictive models would also help to enable preclinical elimination of drug candidates and development of novel biomarkers. A small number of liver laboratory tests have been routinely used to help identify DILI, but their interpretation can be limited and confounded by multiple factors. Improved preclinical and clinical biomarkers are therefore needed to accurately detect early signals of liver injury, distinguish drug hepatotoxicity from other forms of liver injury, and differentiate mild from clinically important liver injury. A range of potentially useful biomarkers are emerging, although so far most have only been used preclinically, with only a few validated and used in the clinic for specific circumstances. Advances in the development of genomic biomarkers will improve the prediction and detection of hepatic injury in future. Establishing a definitive clinical diagnosis of DILI can be difficult, since it is based on circumstantial evidence by excluding other aetiologies and, when possible, identifying a drug-specific signature. DILI signals based on standard liver test abnormalities may be affected by underlying diseases such as hepatitis B and C, HIV and cancer, as well as the concomitant use of hepatotoxic drugs to treat some of these conditions. Therefore, a modified approach to DILI assessment is justified in these special populations and a suggested framework is presented that takes into account underlying disease when evaluating DILI signals in individuals. Detection of idiosyncratic DILI should, in some respects, be easier in the postmarketing setting compared with the clinical development programme, since there is a much larger and more varied patient population exposure over longer timeframes. However, postmarketing safety surveillance is currently limited by the quantity and quality of information available to make an accurate diagnosis, the lack of a control group and the rarity of cases. The pooling of multiple healthcare databases, which could potentially contain different types of patient data, is advised to address some of these deficiencies.
Collapse
Affiliation(s)
- Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universit degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Liu H, Kim Y, Sharkis S, Marchionni L, Jang YY. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med 2011; 3:82ra39. [PMID: 21562231 DOI: 10.1126/scitranslmed.3002376] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) are a potential source of hepatocytes for liver transplantation to treat end-stage liver disease. In vitro differentiation of human iPSCs into hepatic cells has been achieved using a multistage differentiation protocol, but whether these cells are functional and capable of engrafting and regenerating diseased liver tissue is not clear. We show that human iPSC-derived hepatic cells at various differentiation stages can engraft the liver in a mouse transplantation model. Using the same differentiation and transplantation protocols, we also assessed the ability of human iPSCs derived from each of the three developmental germ layer tissues (that is, ectoderm, mesoderm, and endoderm) to regenerate mouse liver. These iPSC lines, with similar but distinct global DNA methylation patterns, differentiated into multistage hepatic cells with an efficiency similar to that of human embryonic stem cells. Human hepatic cells at various differentiation stages derived from iPSC lines of different origins successfully repopulated the liver tissue of mice with liver cirrhosis. They also secreted human-specific liver proteins into mouse blood at concentrations comparable to that of proteins secreted by human primary hepatocytes. Our results demonstrate the engraftment and liver regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo and suggest that human iPSCs of distinct origins and regardless of their parental epigenetic memory can efficiently differentiate along the hepatic lineage.
Collapse
Affiliation(s)
- Hua Liu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
7
|
Abstract
Patients with acute liver failure are a particularly challenging group, with unique difficulties faced in treatment decisions. Life-saving therapy is available, but organ shortage, delays in transplantation, and complications in management result in a high mortality in this group of patients even after transplant. Any pharmacologic intervention that improved outcomes in this population of critically ill patients would be of great benefit. Based on available evidence, different scenarios of participation of HSCs in liver recovery are conceivable. Encouraging HSCs to differentiate into hepatocytes or supply paracrine and cellular level support to accelerate ongoing local repair mechanisms and assist a failing liver with inadequate mass and functional capacity might be directed to occur effectively in humans. Evidence within small animal models of liver injury and observations within the human population suggest that this might also be encouraged. The use of pharmacologic agents to mobilize hematopoietic stem cells is well established and effectively used in a different population of patients. As such, extending the use of these drugs, such as plerixafor, to the human population has a sound basis. However, there is a need for clarification of the mechanisms by which these cells exert their effect as well as which specific population of cells is involved in the regenerative process. To be clinically relevant in scenarios of acute liver failure, stem cell mobilizing strategies would have to impact survival when administered well after injury. Applications in other settings may also prove useful. Limits to liver resection exist where the size of the future liver remnant governs the extent of resection possible. Preexisting functional impairment may be restrictive, and strategies involving stem cells may assist the future liver remnant in both normal and functionally impaired livers. Benefit has already been reported from treatment with G-CSF in other injured tissues, including the injured myocardium and acutely injured kidney. However, as yet no clinical trial exists to assess the effects of stem cell mobilization in humans with acute liver failure. The familiarity in the use of and success demonstrated in the clinical and experimental use of plerixafor and G-CSF make exploration of hematopoietic stem cells as therapy in patients with acute liver failure appealing.
Collapse
Affiliation(s)
- Russell N Wesson
- Department of Surgery, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | |
Collapse
|
8
|
Hossain MM, Shimizu E, Saito M, Rao SR, Yamaguchi Y, Tamiya E. Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video. Analyst 2010; 135:1624-30. [PMID: 20517541 DOI: 10.1039/c0an00208a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The interest in cardiomyocytes derived from differentiation of embryonic stem (ES) cells or induced pluripotent stem (iPS) cells is increasing due to their potential for regenerative therapeutics and as a pharmaceutical model of drug screening. Characterization of ES or iPS derived cardiomyocytes is challenging and inevitable for the intended usage of such cells. In this paper we have outlined a novel, non-invasive method for evaluating in vitro beating properties of cardiomyocytes. The method is based on the analysis of time dependent variation in the total pixel intensities in derivative images obtained from the consecutive systolic and diastolic frames from the light microscopic video recordings of beating tissue. Fast Fourier transform (FFT) yielded the frequency domains for these images. The signal to noise ratio for the analysis met the Rose criterion. We have successfully applied our method for monitoring mouse ES cell (mESC) derived cardiac muscle cells to determine the initiation of beating, organization and maturation of beating tissue, calculating the beating rhythms in terms of beating interval or frequency and the strength of beating. We have shown the successful application of our image analysis method in direct monitoring of the responses of differentiated cardiomyocytes towards caffeine hydrate, p-hydroxyphenylacetamide and calcium chloride dehydrate - respectively as positive, neutral and negative inotropic agents. This non-invasive method of characterization will be useful in studying the response of these cells to various external stimulations, such as differentiation promoting agents or treatments, as well as in preliminary drug screening in a quick and inexpensive manner without needing much expertise.
Collapse
Affiliation(s)
- Mohammad Mosharraf Hossain
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Qin J, Guo X, Cui GH, Zhou YC, Zhou DR, Tang AF, Yu ZD, Gui YT, Cai ZM. Cluster characterization of mouse embryonic stem cell-derived pluripotent embryoid bodies in four distinct developmental stages. Biologicals 2009; 37:235-44. [PMID: 19339198 DOI: 10.1016/j.biologicals.2009.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 10/20/2022] Open
Abstract
The formation of embryoid bodies (EBs) is the principal step in the differentiation of embryonic stem (ES) cells. In this study, the morphological characteristics and gene expression patterns of EBs related to the sequential stages of embryonic development were well defined in four distinct developmental groups over 112 days of culture: early-stage EBs groups (1-7 days of differentiation), mid-stage EBs groups (9-15 days of differentiation), maturing EBs groups (17-45 days of differentiation) and matured EBs groups (50 days of differentiation). We first determined definite histological location of apoptosis within EBs and the sequential expression of molecular markers representing stem cells (Oct4, SSEA-1, Sox-2 and AKP), germ cells (Fragilis, Dazl, c-kit, StellaR, Mvh and Stra8), ectoderm (Neurod, Nestin and Neurofilament), mesoderm (Gata-1, Flk-1 and Hbb) and endoderm (AFP and Transthyretin). Our results revealed that developing EBs possess either pluripotent stem cell or germ cell states and that three-dimensional aggregates of EBs initiate mES cell differentiation during prolonged culture in vitro. Therefore, we suggest that this EB system to some extent recapitulates the early developmental processes occurring in vivo.
Collapse
Affiliation(s)
- J Qin
- Key Laboratory of Male Reproduction & Genetics of Guangdong Province, Peking University, Shenzhen Hospital, Lianhua Road 1120, FuTian District, Shenzhen 518036, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|