1
|
Secombe KR, Van Sebille YZA, Mayo BJ, Coller JK, Gibson RJ, Bowen JM. Diarrhea Induced by Small Molecule Tyrosine Kinase Inhibitors Compared With Chemotherapy: Potential Role of the Microbiome. Integr Cancer Ther 2021; 19:1534735420928493. [PMID: 32493068 PMCID: PMC7273583 DOI: 10.1177/1534735420928493] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Small molecule receptor tyrosine kinase inhibitors (SM-TKIs) are among a group of
targeted cancer therapies, intended to be more specific to cancer cells compared
with treatments, such as chemotherapy, hence reducing adverse events.
Unfortunately, many patients report high levels of diarrhea, the pathogenesis of
which remains under investigation. In this article, we compare the current state
of knowledge of the pathogenesis of chemotherapy-induced diarrhea (CID) in
comparison to SM-TKI–induced diarrhea, and investigate how a similar research
approach in both areas may be beneficial. To this end, we review evidence that
both treatment modalities may interact with the gut microbiome, and as such the
microbiome should be investigated for its ability to reduce the risk of
diarrhea.
Collapse
Affiliation(s)
- Kate R Secombe
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Ysabella Z A Van Sebille
- UniSA Online, Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bronwen J Mayo
- Division of Health Sciences, University of South Australia, South Australia, Australia
| | - Janet K Coller
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Rachel J Gibson
- School of Allied Health Science and Practice, University of Adelaide, South Australia, Australia
| | - Joanne M Bowen
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Systematic review of agents for the management of cancer treatment-related gastrointestinal mucositis and clinical practice guidelines. Support Care Cancer 2019; 27:4011-4022. [DOI: 10.1007/s00520-019-04892-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
|
3
|
Van Sebille YZ, Gibson RJ, Wardill HR, Carney TJ, Bowen JM. Use of zebrafish to model chemotherapy and targeted therapy gastrointestinal toxicity. Exp Biol Med (Maywood) 2019; 244:1178-1185. [PMID: 31184924 DOI: 10.1177/1535370219855334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gastrointestinal toxicity arising from cancer treatment remains a key reason for treatment discontinuation, significantly compromising remission. There are drawbacks to the currently used in vitro and rodent models, and a lack of translatability from in vitro to in vivo work. A screening-amenable alternative in vivo model such as zebrafish would, therefore, find immediate application. This study utilized a transgenic reporter line of zebrafish, Tg(cyp2k18:egfp), that shows eGFP induction as an indicator of drug-induced pathology. Here, we investigate its utility as an alternative vertebrate model to bridge the gap between simple in vitro cellular studies and complex in vivo models for understanding gastrointestinal toxicity induced by chemotherapy and targeted therapy. Transgenic zebrafish larvae were administered afatinib or SN38, and assessed for viability and eGFP induction. Adult zebrafish were administered afatinib via oral gavage, and SN38 via intraperitoneal injection. Fish were killed after 24 h, and had gastrointestinal tracts removed and assessed for histopathological damage, goblet cell changes, and apoptosis. While treatment with either compound did not induce eGFP in the gastrointestinal tract of larvae, SN38 caused histopathological damage to adult intestines. The lack of eGFP induction may be due to poor solubility of the drugs. Chemotherapy agents with high solubility and permeability would be more amenable to these models. Further progress in this area would be greatly facilitated by the generation of robust and reproducible genetic models of zebrafish intestinal toxicity that mimic the known pathobiological pathways in rodents and humans, and can be readily induced in a short time-frame. Impact statement Gastrointestinal toxicity secondary to cancer treatment remains a major reason for the termination of cancer drug candidates in the development pipeline as well as withdrawal or restrictions of marketed drugs. Current cancer treatment-induced gastrointestinal toxicity models available are limited to in vitro and rodent models that lack translatability and are prohibitively expensive and time consuming. An alternative model to study cancer treatment-induced gastrointestinal toxicity that allows rapid, miniaturized, multi-organ toxicity, screening-amenable testing is therefore warranted. The newly developed Tg( cyp2k18:egfp) zebrafish reporter line was found to induce eGFP in the gastrointestinal tract if toxicity was induced in this area. This paper explored utilizing this reporter line for cancer treatment-induced gastrointestinal toxicity, but found that it was not a useful reporter line in this setting. Further progress in this area would be greatly facilitated by the generation of robust and reproducible genetic models of zebrafish intestinal toxicity that mimic the known pathobiological pathways.
Collapse
Affiliation(s)
- Ysabella Za Van Sebille
- Adelaide Medical School, University of Adelaide, Adelaide 5000, Australia.,Division of Health Sciences, University of South Australia, Adelaide SA 5000, Australia
| | - Rachel J Gibson
- Division of Health Sciences, University of South Australia, Adelaide SA 5000, Australia
| | - Hannah R Wardill
- Adelaide Medical School, University of Adelaide, Adelaide 5000, Australia
| | - Thomas J Carney
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636912, Singapore*Joint senior authors, these authors contributed to this publication equally
| | - Joanne M Bowen
- Adelaide Medical School, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
4
|
Van Sebille YZ, Gibson RJ, Wardill HR, Ball IA, Keefe DM, Bowen JM. Dacomitinib-induced diarrhea: Targeting chloride secretion with crofelemer. Int J Cancer 2017; 142:369-380. [DOI: 10.1002/ijc.31048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/21/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Hannah R. Wardill
- Discipline of Physiology; Adelaide Medical School, University of Adelaide; Australia
| | - Imogen A. Ball
- Discipline of Physiology; Adelaide Medical School, University of Adelaide; Australia
| | - Dorothy M.K. Keefe
- Discipline of Physiology; Adelaide Medical School, University of Adelaide; Australia
| | - Joanne M. Bowen
- Discipline of Physiology; Adelaide Medical School, University of Adelaide; Australia
| |
Collapse
|
5
|
Van Sebille YZA, Gibson RJ, Wardill HR, Secombe KR, Ball IA, Keefe DMK, Finnie JW, Bowen JM. Dacomitinib-induced diarrhoea is associated with altered gastrointestinal permeability and disruption in ileal histology in rats. Int J Cancer 2017; 140:2820-2829. [PMID: 28316082 DOI: 10.1002/ijc.30699] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/02/2017] [Accepted: 02/23/2017] [Indexed: 01/21/2023]
Abstract
Dacomitinib-an irreversible pan-ErbB tyrosine kinase inhibitor (TKI)-causes diarrhoea in 75% of patients. Dacomitinib-induced diarrhoea has not previously been investigated and the mechanisms remain poorly understood. The present study aimed to develop an in-vitro and in-vivo model of dacomitinib-induced diarrhoea to investigate underlying mechanisms. T84 cells were treated with 1-4 μM dacomitinib and resistance and viability were measured using transepithelial electrical resistance (TEER) and XTT assays. Rats were treated with 7.5 mg/kg dacomitinib daily via oral gavage for 7 or 21 days (n = 6/group). Weights, and diarrhoea incidence were recorded daily. Rats were administered FITC-dextran 2 hr before cull, and serum levels of FITC-dextran were measured and serum biochemistry analysis was conducted. Detailed histopathological analysis was conducted throughout the gastrointestinal tract. Gastrointestinal expression of ErbB1, ErbB2 and ErbB4 was analysed using RT-PCR. The ileum and the colon were analysed using multiplex for expression of various cytokines. T84 cells treated with dacomitinib showed no alteration in TEER or cell viability. Rats treated with dacomitinib developed severe diarrhoea, and had significantly lower weight gain. Further, dacomitinib treatment led to severe histopathological injury localised to the ileum. This damage coincided with increased levels of MCP1 in the ileum, and preferential expression of ErbB1 in this region compared to all other regions. This study showed dacomitinib induces severe ileal damage accompanied by increased MCP1 expression, and gastrointestinal permeability in rats. The histological changes were most pronounced in the ileum, which was also the region with the highest relative expression of ErbB1.
Collapse
Affiliation(s)
- Ysabella Z A Van Sebille
- Cancer Treatment Toxicities Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Rachel J Gibson
- Cancer Treatment Toxicities Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Hannah R Wardill
- Cancer Treatment Toxicities Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Kate R Secombe
- Cancer Treatment Toxicities Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Imogen A Ball
- Cancer Treatment Toxicities Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Dorothy M K Keefe
- Cancer Treatment Toxicities Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - John W Finnie
- SA Pathology, Research Division, Adelaide, Australia
| | - Joanne M Bowen
- Cancer Treatment Toxicities Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
6
|
Advances in understanding and improving gastrointestinal symptoms during supportive and palliative care: a decade of progress. Curr Opin Support Palliat Care 2016; 10:149-51. [PMID: 27054289 DOI: 10.1097/spc.0000000000000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|