1
|
Pujol-Gualdo N, Läll K, Lepamets M, Rossi HR, Arffman RK, Piltonen TT, Mägi R, Laisk T. Advancing our understanding of genetic risk factors and potential personalized strategies for pelvic organ prolapse. Nat Commun 2022; 13:3584. [PMID: 35739095 PMCID: PMC9226158 DOI: 10.1038/s41467-022-31188-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Pelvic organ prolapse is a common gynecological condition with limited understanding of its genetic background. In this work, we perform a genome-wide association meta-analysis comprising 28,086 cases and 546,291 controls from European ancestry. We identify 19 novel genome-wide significant loci, highlighting connective tissue, urogenital and cardiometabolic as likely affected systems. Here, we prioritize many genes of potential interest and assess shared genetic and phenotypic links. Additionally, we present the first polygenic risk score, which shows similar predictive ability (Harrell C-statistic (C-stat) 0.583, standard deviation (sd) = 0.007) as five established clinical risk factors combined (number of children, body mass index, ever smoked, constipation and asthma) (C-stat = 0.588, sd = 0.007) and demonstrates a substantial incremental value in combination with these (C-stat = 0.630, sd = 0.007). These findings improve our understanding of genetic factors underlying pelvic organ prolapse and provide a solid start evaluating polygenic risk scores as a potential tool to enhance individual risk prediction. Although pelvic organ prolapse is a common gynecological condition, the genetic component of disease risk is not well known. Here the authors find common genetic variants associated with the disease and present a polygenic risk score to enhance individual risk prediction.
Collapse
Affiliation(s)
- Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia. .,Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu, University Hospital, University of Oulu, Oulu, Finland.
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Maarja Lepamets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Henna-Riikka Rossi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu, University Hospital, University of Oulu, Oulu, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu, University Hospital, University of Oulu, Oulu, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu, University Hospital, University of Oulu, Oulu, Finland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Costa E Silva CL, Bortolini MAT, Batista NC, Silva RSP, Teixeira JB, Oliveira É, Souto RP, Castro RA. The rs2165241 polymorphism of the Loxl1 gene in postmenopausal women with pelvic organ prolapse. Climacteric 2022; 25:407-412. [PMID: 35440244 DOI: 10.1080/13697137.2022.2058392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This study aimed to verify the presence of polymorphism rs2165241 of the lysyl oxidase-like 1 (Loxl1) gene and its association with pelvic organ prolapse (POP) in Brazilian women and determine risk factors for POP development. METHODS The study was previously approved by the local research and ethics board. Postmenopausal women were included and divided into POP (stages III and IV) and control (stages 0 and I) groups. Peripheral blood samples were collected, and the DNA sequence of interest was analyzed by real-time reverse-transcriptase polymerase chain reaction. We used logistic regression and considered a recessive model of inheritance for the analysis, with p < 0.05 for significance. RESULTS A total of 836 women were assessed: 426 POP cases and 410 controls. The frequencies of CC, CT and TT genotypes were similar in both groups. Age (odds ratio [OR] = 1.1, 95% confidence interval [CI] = 1.07; 1.14), number of vaginal births (OR = 17.06, 95% CI = 5.94; 48.97), family history (OR = 2.87, 95% CI = 1.57; 5.22) and weight of largest newborn (OR = 1.001, 95% CI = 1.0003; 1.001) were independent risk factors for POP, while multiple cesarean sections (two or more) was protective (OR = 0.17, 95% CI = 0.07; 0.42). CONCLUSION No association was detected between rs2165241 of the Loxl1 gene and POP.
Collapse
Affiliation(s)
- C L Costa E Silva
- Department of Urogynecology and Reconstructive Pelvic Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M A T Bortolini
- Department of Urogynecology and Reconstructive Pelvic Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - N C Batista
- Department of Urogynecology and Reconstructive Pelvic Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R S P Silva
- Department of Urogynecology and Reconstructive Pelvic Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J B Teixeira
- Department of Urogynecology and Reconstructive Pelvic Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - É Oliveira
- Department of Urogynecology and Vaginal Surgery, Centro Universitário FMABC, Santo André, Brazil
| | - R P Souto
- Department of Morphology and Physiology, Centro Universitário FMABC, Santo André, Brazil
| | - R A Castro
- Department of Urogynecology and Reconstructive Pelvic Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Allen-Brady K, Bortolini MAT, Damaser MS. Mouse Knockout Models for Pelvic Organ Prolapse: a Systematic Review. Int Urogynecol J 2022; 33:1765-1788. [PMID: 35088092 DOI: 10.1007/s00192-021-05066-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Mouse knockout (KO) models of pelvic organ prolapse (POP) have contributed mechanistic evidence for the role of connective tissue defects, specifically impaired elastic matrix remodeling. Our objective was to summarize what mouse KO models for POP are available and what have we learned from these mouse models about the pathophysiological mechanisms of POP development. METHODS We conducted a systematic review and reported narrative findings according to PRISMA guidelines. Two independent reviewers searched PubMed, Scopus and Embase for relevant manuscripts and conference abstracts for the time frame of January 1, 2000, to March 31, 2021. Conference abstracts were limited to the past 5 years. RESULTS The search strategy resulted in 294 total titles. We ultimately included 25 articles and an additional 11 conference abstracts. Five KO models have been studied: Loxl1, Fbln5, Fbln3, Hoxa11 and Upii-sv40t. Loxl1 and Fbln5 KO models have provided the most reliable and predictable POP phenotype. Loxl1 KO mice develop POP primarily from failure to heal after giving birth, whereas Fbln5 KO mice develop POP with aging. These mouse KO models have been used for a wide variety of investigations including genetic pathways involved in development of POP, biomechanical properties of the pelvic floor, elastic fiber deposition, POP therapies and the pathophysiology associated with mesh complications. CONCLUSIONS Mouse KO models have proved to be a valuable tool in the study of specific genes and their role in the development and progression of POP. They may be useful to study POP treatments and POP complications.
Collapse
Affiliation(s)
- Kristina Allen-Brady
- Department of Internal Medicine, University of Utah, Williams Building 295 Chipeta Way, Salt Lake City, UT, USA.
| | - Maria A T Bortolini
- Department of Gynecology, Sector of Urogynecology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
4
|
Li Y, Wu B, An C, Jiang D, Gong L, Liu Y, Liu Y, Li J, Ouyang H, Zou X. Mass cytometry and transcriptomic profiling reveal body-wide pathology induced by Loxl1 deficiency. Cell Prolif 2021; 54:e13077. [PMID: 34105806 PMCID: PMC8249785 DOI: 10.1111/cpr.13077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Objective The loss of LOXL1 expression reportedly leads to the prolapse of pelvic organs or to exfoliation syndrome glaucoma. Increasing evidence suggests that LOXL1 deficiency is associated with the pathogenesis of several other diseases. However, the characterization of the systemic functions of LOXL1 is limited by the lack of relevant investigative technologies. Materials and Methods To determine the functions of LOXL1, a novel method for body‐wide organ transcriptome profiling, combined with single‐cell mass cytometry, was developed. A body‐wide organ transcriptomic (BOT) map was created by RNA‐Seq of tissues from 17 organs from both Loxl1 knockout (KO) and wild‐type mice. Results The BOT results indicated the systemic upregulation of genes encoding proteins associated with the immune response and proliferation processes in multiple tissues of KO mice, and histological and immune staining confirmed the hyperplasia and infiltration of local immune cells in the tissues of KO mice. Furthermore, mass cytometry analysis of peripheral blood samples revealed systemic immune changes in KO mice. These findings were well correlated with results obtained from cancer databases. Patients with tumours had higher Loxl1 mutation frequencies, and patients with Loxl1‐mutant tumours showed the upregulation of immune processes and cell proliferation and lower survival rates. Conclusion This study provides an effective strategy for the screening of gene functions in multiple organs and also illustrates the important biological roles of LOXL1 in the cells of multiple organs as well as in systemic immunity.
Collapse
Affiliation(s)
- Yu Li
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Bingbing Wu
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Chengrui An
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Deming Jiang
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Lin Gong
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Yanshan Liu
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Yixiao Liu
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Jun Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - XiaoHui Zou
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| |
Collapse
|
5
|
Jameson SA, Swaminathan G, Dahal S, Couri B, Kuang M, Rietsch A, Butler RS, Ramamurthi A, Damaser MS. Elastin homeostasis is altered with pelvic organ prolapse in cultures of vaginal cells from a lysyl oxidase-like 1 knockout mouse model. Physiol Rep 2021; 8:e14436. [PMID: 32533648 PMCID: PMC7292929 DOI: 10.14814/phy2.14436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
Pelvic organ prolapse (POP) decreases quality of life for many women, but its pathophysiology is poorly understood. We have previously shown that Lysyl oxidase‐like 1 knockout (Loxl1 KO) mice reliably prolapse with age and increased parity, similar to women. Both this model and clinical studies also indicate that altered elastin metabolism in pelvic floor tissues plays a role in POP manifestation, although it is unknown if this is a cause or effect. Using Loxl1 KO mice, we investigated the effects of genetic absence of Loxl1, vaginal parity, and presence of POP on the expression of genes and proteins key to the production and regulation of elastic matrix. Cultured cells isolated from vaginal explants of mice were assayed with Fastin for elastic matrix, as well as RT‐PCR and Western blot for expression of genes and proteins important for elastin homeostasis. Elastin synthesis significantly decreased with absence of LOXL1 and increased with parity (p < .001), but not with POP. Cells from prolapsed mice expressed significantly decreased MMP‐2 (p < .05) and increased TIMP‐4 (p < .05). The results suggest changes to elastin structure rather than amounts in prolapsed mice as well as poor postpartum elastin turnover, resulting in accumulation of damaged elastic fibers leading to abnormal tropoelastin deposition. POP may thus, be the result of an inability to initiate the molecular mechanisms necessary to clear and replace damaged elastic matrix in pelvic floor tissues after vaginal birth.
Collapse
Affiliation(s)
- Slater A Jameson
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Shataakshi Dahal
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bruna Couri
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mei Kuang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Rietsch
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert S Butler
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
6
|
Dahal S, Kuang M, Rietsch A, Butler RS, Ramamurthi A, Damaser MS. Quantitative Morphometry of Elastic Fibers in Pelvic Organ Prolapse. Ann Biomed Eng 2021; 49:1909-1922. [PMID: 33768411 DOI: 10.1007/s10439-021-02760-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Pelvic organ prolapse (POP) is common among older women who have delivered children vaginally. While the pathophysiology is not fully delineated, POP can occur in part from insufficient repair of disrupted elastic matrix fibers. Quantification of structural changes to elastic fibers has not been described previously for POP. The goal of this paper is to present a validated technique for morphometric analysis of elastic fibers in vaginal tissue cultures from lysyl oxidase like-1 knock out (LOXL1 KO) mice with POP. The effect of LOXL1 KO, effect of POP, effect of culture, and effect of elastogenic treatment on the changes in elastin fiber characteristics were tested using vaginal tissues from wild type multiparous (WT), LOXL1 KO multiparous prolapsed (POP) and LOXL1 KO multiparous non-prolapsed (NP) mice. Our results show significantly higher mean aspect ratio, maximum diameter and perimeter length in POP compared to NP after 3 weeks of tissue culture. Further, treatment of POP tissues in culture with growth factors with previously documented elastogenic effects caused a significant increase in the mean area and perimeter length of elastic fibers. This technique thus appears to be useful in quantifying structural changes and can be used to assess the pathophysiology of POP and the effect of elastogenic treatments with potential for POP.
Collapse
Affiliation(s)
- Shataakshi Dahal
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH, 44195, USA
| | - Mei Kuang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH, 44195, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anna Rietsch
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH, 44195, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - R S Butler
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH, 44195, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
7
|
Li Y, Zhang QY, Sun BF, Ma Y, Zhang Y, Wang M, Ma C, Shi H, Sun Z, Chen J, Yang YG, Zhu L. Single-cell transcriptome profiling of the vaginal wall in women with severe anterior vaginal prolapse. Nat Commun 2021; 12:87. [PMID: 33397933 PMCID: PMC7782707 DOI: 10.1038/s41467-020-20358-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Anterior vaginal prolapse (AVP) is the most common form of pelvic organ prolapse (POP) and has deleterious effects on women's health. Despite recent advances in AVP diagnosis and treatment, a cell atlas of the vaginal wall in AVP has not been constructed. Here, we employ single-cell RNA-seq to construct a transcriptomic atlas of 81,026 individual cells in the vaginal wall from AVP and control samples and identify 11 cell types. We reveal aberrant gene expression in diverse cell types in AVP. Extracellular matrix (ECM) dysregulation and immune reactions involvement are identified in both non-immune and immune cell types. In addition, we find that several transcription factors associated with ECM and immune regulation are activated in AVP. Furthermore, we reveal dysregulated cell-cell communication patterns in AVP. Taken together, this work provides a valuable resource for deciphering the cellular heterogeneity and the molecular mechanisms underlying severe AVP.
Collapse
Affiliation(s)
- Yaqian Li
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Qing-Yang Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Bao-Fa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- China National Center for Bioinformation, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yidi Ma
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Ye Zhang
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Min Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Congcong Ma
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Honghui Shi
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Zhijing Sun
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Juan Chen
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.
- China National Center for Bioinformation, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Lan Zhu
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
8
|
Borazjani A, Couri BM, Kuang M, Balog BM, Damaser MS. Role of lysyl oxidase like 1 in regulation of postpartum connective tissue metabolism in the mouse vagina†. Biol Reprod 2020; 101:916-927. [PMID: 31403161 DOI: 10.1093/biolre/ioz148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 05/29/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
Pelvic organ prolapse (POP) in lysyl oxidase like-1 knockout (Loxl1 KO) mice occurs primarily in parous mice and is rare in nulliparous mice. We determined the effect of Loxl1 deficiency on postpartum regulation of connective tissue metabolism genes and degradative enzyme activity in the vagina at 20 days gestation or 4 h, 48 h, 7 days, 15 days, 25 days, 7 weeks, or 12 weeks postpartum. Nulliparous Loxl1 KO and wildtype (WT) mice aged 11, 18, or 23 weeks were controls. Gene expression and enzyme activity were assessed using real-time quantitative reverse transcription PCR and fluorescein conjugated gelatin zymography, respectively. Parity, but not aging, had a significant influence on gene expression both with time postpartum and between KO and WT mice. Mmp2, Timp1, Timp2, Timp3, Timp4, Col1a1, Col3a1, Acta2, and Bmp1 were differentially expressed between KO and WT mice. Correlational analysis of gene-gene pairs revealed 10 significant differences between parous KO and WT groups, 5 of which were due to lack of co-expression of Bmp1 in KO mice. The overall enzyme activity that could be attributed to MMPs was significantly higher in WT compared to KO mice both 25 days and 12 weeks postpartum, and MMP activity was significantly lower 15 days and 25 days postpartum compared to KO nulliparous controls, but not WT. These findings suggest that Loxl1 deficiency combined with parity has a significant impact on postpartum regulation of connective tissue metabolism, particularly as it relates to co-expression of Bmp1 and altered proteolytic activity.
Collapse
Affiliation(s)
- Ali Borazjani
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Bruna M Couri
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA.,Department of Obstetrics & Gynecology, Cleveland Clinic, Cleveland, OH, USA
| | - Mei Kuang
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Brian M Balog
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Margot S Damaser
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA.,Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, USA.,Department of Obstetrics & Gynecology, Cleveland Clinic, Cleveland, OH, USA.,Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Louis Stokes Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
9
|
Abstract
OBJECTIVE Pelvic organ prolapse (POP) affects a significant percentage of women and contributes to major healthcare costs both in the United States and worldwide. This review examines the current understanding of the role of sex steroid hormones (estrogens, androgens, and progesterone) in POP in premenopausal, perimenopausal, and postmenopausal women. METHODS We reviewed the relevant studies on POP related to estrogens, androgens, and progesterone in both animal models and humans. RESULTS Estrogen has a profound influence on the synthesis and metabolism of pelvic connective tissues, and may have the ability to both prevent POP and improve prognosis if used therapeutically. There is limited research regarding the role of androgens and progesterone and their receptors in POP and results so far have been contradictory, warranting further study to determine whether changes in androgen and progesterone receptor expression are a cause or effect of POP. CONCLUSIONS Because of the role that estrogen plays in maintaining the integrity of pelvic floor connective tissues, we propose that rigorous and well-controlled studies are needed on the role of exogenous estrogen administration as a form of POP prevention. : Video Summary:http://links.lww.com/MENO/A583.
Collapse
|
10
|
Transcriptional Regulation of Connective Tissue Metabolism Genes in Women With Pelvic Organ Prolapse. Female Pelvic Med Reconstr Surg 2017; 23:44-52. [PMID: 27636223 DOI: 10.1097/spv.0000000000000337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to compare differences in expressions and relationships between key genes involved in extracellular matrix metabolism and tissue cellularity in women with and without pelvic organ prolapse (POP). METHODS A total of 80 biopsies (anterior cuff, posterior cuff, and/or leading edge) were obtained from 30 women: n = 10 premenopausal without POP (controls), n = 10 premenopausal with POP, and n = 10 postmenopausal with POP. Quantitative reverse-transcriptase polymerase chain reaction was used to assess gene expression of bone morphogenetic protein 1 (BMP1), collagen types I (COL1) and III (COL3), relaxin family peptide receptor 1 (RXFP1), matrix metallopeptidase 2, and TIMP metallopeptidase inhibitors 2 and 3. Hematoxylin and eosin staining was used to assess cellularity of the connective tissue layer. Kruskal-Wallis test, Mann-Whitney U test, Pearson correlation, or linear regression analyses were used, as appropriate. RESULTS Bone morphogenetic protein 1 expression was significantly up-regulated in patients with POP compared with controls. Bone morphogenetic protein 1 expression was correlated with COL1 expression in all groups but only correlated with TIMP metallopeptidase inhibitor 3 expression in controls. Similarly, COL3 expression was correlated with RXFP1 expression in women with POP but not in controls. The degree of dependence (slope of the regression line) between COL1 and COL3 expressions was significantly elevated in premenopausal women with POP compared with the other 2 groups. The slopes between COL1-COL3, COL3-matrix metallopeptidase 2, COL1-RXFP1, and COL3-RXFP1 expressions were significantly lower in postmenopausal women compared with premenopausal women with POP. No differences were found in overall tissue cellularity. CONCLUSIONS Bone morphogenetic protein 1 expression may play a significant role in the pathophysiology of POP. The finding that BMP1 expression was correlated with COL1 expression in all groups suggests a conserved association between BMP1 and collagen synthesis in the vaginal wall. The elevated slope between COL1 and COL3 expressions may be associated with early (premenopausal) development of POP. The expression of RXFP1 in postmenopausal women and its altered intergene regulation suggests a role for RXFP1 in connective tissue metabolism outside pregnancy.
Collapse
|
11
|
Khadzhieva MB, Kolobkov DS, Kamoeva SV, Salnikova LE. Expression changes in pelvic organ prolapse: a systematic review and in silico study. Sci Rep 2017; 7:7668. [PMID: 28794464 PMCID: PMC5550478 DOI: 10.1038/s41598-017-08185-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/05/2017] [Indexed: 01/23/2023] Open
Abstract
Pelvic organ prolapse (POP) is a highly disabling condition common for a vast number of women worldwide. To contribute to existing knowledge in POP pathogenesis, we performed a systematic review of expression studies on both specific gene and whole-genome/proteome levels and an in silico analysis of publicly available datasets related to POP development. The most extensively investigated genes in individual studies were related to extracellular matrix (ECM) organization. Three premenopausal and two postmenopausal sets from two Gene Expression Omnibus (GEO) studies (GSE53868 and GSE12852) were analyzed; Gene Ontology (GO) terms related to tissue repair (locomotion, biological adhesion, immune processes and other) were enriched in all five datasets. Co-expression was higher in cases than in controls in three premenopausal sets. The shared between two or more datasets up-regulated genes were enriched with those related to inflammatory bowel disease (IBD) in the NHGRI GWAS Catalog. ECM-related genes were not over-represented among differently expressed genes. Up-regulation of genes related to tissue renewal probably reflects compensatory mechanisms aimed at repair of damaged tissue. Inefficiency of this process may have different origins including age-related deregulation of gene expression.
Collapse
Affiliation(s)
- Maryam B Khadzhieva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina str., Moscow, 119333, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, 117997, Russia
| | - Dmitry S Kolobkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina str., Moscow, 119333, Russia
| | - Svetlana V Kamoeva
- Pirogov Russian National Research Medical University, 1 Ostrovitianov str., Moscow, 117997, Russia
| | - Lyubov E Salnikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina str., Moscow, 119333, Russia. .,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, 117997, Russia.
| |
Collapse
|
12
|
Aboobakar IF, Johnson WM, Stamer WD, Hauser MA, Allingham RR. Major review: Exfoliation syndrome; advances in disease genetics, molecular biology, and epidemiology. Exp Eye Res 2016; 154:88-103. [PMID: 27845061 DOI: 10.1016/j.exer.2016.11.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/06/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Exfoliation syndrome (XFS) is a common age-related disorder that leads to deposition of extracellular fibrillar material throughout the body. The most recognized disease manifestation is exfoliation glaucoma (XFG), which is a common cause of blindness worldwide. Recent developments in XFS genetics, cell biology and epidemiology have greatly improved our understanding of the etiology of this complex inherited disease. This review summarizes current knowledge of XFS pathogenesis, identifies gaps in knowledge, and discusses areas for future research.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - William M Johnson
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Michael A Hauser
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Moulin L, Cenizo V, Antu AN, André V, Pain S, Sommer P, Debret R. Methylation of LOXL1 Promoter by DNMT3A in Aged Human Skin Fibroblasts. Rejuvenation Res 2016; 20:103-110. [PMID: 27396912 DOI: 10.1089/rej.2016.1832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysyl oxidase-like 1 (LOXL1) is an amino-oxidase involved in maturation of elastic fibers. Its downregulation has been associated with elastic fibers repair loss in aging aorta, lung, ligament, and skin. Several evidences of LOXL1 epigenetic silencing by promoter methylation were reported in cancer and cutis laxa syndrome. We hypothesized that this mechanism could be implicated in skin aging process, as far as elastic fibers are also concerned. Anti-DNMT3A chromatin immunoprecipitation was conducted with nuclear extracts from skin fibroblasts isolated from young and elderly individuals, and showed a higher level of DNMT3A protein binding to the LOXL1 promoter in older cells concomitantly to the decrease of LOXL1 mRNA expression and the increase of LOXL1 promoter methylation. Using luciferase reporter assay driven by LOXL1 promoter in HEK293 cells, we demonstrated that LOXL1 transcriptional activity was dramatically reduced when a recombinant DNMT3A was concomitantly overexpressed. LOXL1 promoter transcriptional activity was restored in the presence of a broad-spectrum inhibitor of DNMT activity, 5-aza-2'-deoxycytidine. Finally, to assess whether the interplay between DNMT3A and LOXL1 promoter could be targeted to increase LOXL1 mRNA expression level, an Origanum majorana extract was selected among 43 plant extracts as a new inhibitor of human DNMT3A activity to restore LOXL1 secretion without cytotoxicity in aged skin fibroblasts.
Collapse
Affiliation(s)
- Léa Moulin
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| | | | - Alengo Nyamay Antu
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| | - Valérie André
- 2 BASF-Beauty Care Solutions France SAS , Lyon, France
| | - Sabine Pain
- 2 BASF-Beauty Care Solutions France SAS , Lyon, France
| | - Pascal Sommer
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| | - Romain Debret
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| |
Collapse
|