1
|
Kao E, Germany JO, Shasheendra A, Mhetre K, Wang X, Ringgold K, Patel S, Emery A, Bulger EM, White N, Aarabi S. Therapeutic limb hypothermia for the treatment of traumatic acute limb ischemia. J Med Eng Technol 2024:1-9. [PMID: 39034423 DOI: 10.1080/03091902.2024.2362667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/25/2024] [Indexed: 07/23/2024]
Abstract
Acute limb ischaemia (ALI) is an emergent clinical condition that strains pre-hospital resources and impacts healthcare costs and patient quality of life. Hypothermia has long been used in clinical and research settings to mitigate ischaemic damage in tissues, but prompt reperfusion is needed to prevent loss of limb or function from ALI. To address the unmet need for pre-hospital intervention of threatened limbs awaiting definitive specialty care, we have focused on controlled application of hypothermia. Over years of animal experiments, phantom limb creation, and materials selection, we conceptualised and created a portable limb-cooling device that can be used alone or combined with a traditional tourniquet or resuscitative endovascular balloon occlusion of the aorta. Here, we describe our process of building and testing the device, from computer simulation through animal-limb metabolic studies, to prototype testing.
Collapse
Affiliation(s)
- Emily Kao
- Department of Surgery, Highland Hospital, University of California San Francisco-East Bay, Oakland, CA, USA
| | - Jason O Germany
- Industrial Design Program, School of Art + Art History + Design, University of Washington, Seattle, WA, USA
| | - Abhijith Shasheendra
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Ketan Mhetre
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Xu Wang
- Department of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Kristyn Ringgold
- Department of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Sahil Patel
- Department of Surgery, Highland Hospital, University of California San Francisco-East Bay, Oakland, CA, USA
| | - Ashley Emery
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Eileen M Bulger
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Nathan White
- Department of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Shahram Aarabi
- Department of Surgery, Highland Hospital, University of California San Francisco-East Bay, Oakland, CA, USA
| |
Collapse
|
2
|
Brenner M. The Role of Resuscitative Endovascular Balloon Occlusion of the Aorta. Surg Clin North Am 2024; 104:311-323. [PMID: 38453304 DOI: 10.1016/j.suc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Resuscitative endovascular balloon occlusion of the aorta (REBOA) has been utilized by trauma surgeons at the bedside for over a decade in both civilian and military settings. Both translational and clinical research suggest it is superior to resuscitative thoracotomy for specific patient populations. Technological advancements in recent years have significantly enhanced the safety profile of REBOA. Resuscitative balloon occlusion of the aorta has also swiftly found implementation in patients in shock from non-traumatic hemorrhage.
Collapse
Affiliation(s)
- Megan Brenner
- UCLA Department of Surgery, UCLA David Geffen School of Medicine, 10833 Le Conte Avenue #72, Los Angeles, CA 90024, USA.
| |
Collapse
|
3
|
Shaw J, Brenner M. Resuscitative balloon occlusion of the aorta in the modern era: Expanding indications, optimal techniques, unresolved issues, and current results. Semin Vasc Surg 2023; 36:250-257. [PMID: 37330238 DOI: 10.1053/j.semvascsurg.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Resuscitative endovascular balloon occlusion of the aorta has been used by trauma surgeons at the bedside for more than a decade in civilian and military settings. Translational and clinical research suggests it is superior to resuscitative thoracotomy for select patients. Clinical research suggests outcomes are superior in patients who received resuscitative balloon occlusion of the aorta compared with those who did not. Technology has advanced considerably in the past several years, leading to the improved safety profile and wider adoption of resuscitative balloon occlusion of the aorta. In addition to trauma patients, resuscitative balloon occlusion of the aorta has been rapidly implemented for patient with nontraumatic hemorrhage.
Collapse
Affiliation(s)
- Joanna Shaw
- Department of Surgery, UCLA David Geffen School of Medicine, 10833 Le Conte Avenue #72, Los Angeles, California, 90024
| | - Megan Brenner
- Department of Surgery, UCLA David Geffen School of Medicine, 10833 Le Conte Avenue #72, Los Angeles, California, 90024.
| |
Collapse
|
4
|
Dl-3-n-Butylphthalide (NBP) Mitigates Muscular Injury Induced by Limb Ischemia/Reperfusion in Mice through the HMGB1/TLR4/NF-κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5556067. [PMID: 36199552 PMCID: PMC9529425 DOI: 10.1155/2022/5556067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/05/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022]
Abstract
Objective Limb ischemia/reperfusion (I/R) injury is a clinical syndrome associated with severe damages to skeletal muscles and other fatal outcomes. Oxidative stress and inflammatory response play vital roles in the development of limb I/R injury. Existing evidence further indicates that Dl-3-n-butylphthalide (NBP) has anti-inflammatory and antioxidative properties. However, whether NBP can protect skeletal muscles from limb I/R injury and the mechanism in mediating the action of NBP treatment still remain to be investigated, which are the focuses of the current study. Methods The model of limb I/R injury was established and H&E staining was adopted to assess the pathological changes in skeletal muscles following limb I/R injury. Additionally, the W/D ratio of muscle tissue was also measured. ELISA and biochemical tests were carried out to measure the levels of inflammatory cytokines and oxidative stress in mouse models of limb I/R injury. Moreover, the levels of the HMGB1/TLR4/NF-κB pathway-related proteins were also determined using immunohistochemistry and immunoblotting. Results It was established that NBP treatment alleviated I/R-induced pathological changes in muscular tissue of mice, accompanied by lower W/D ratio of skeletal muscular tissue. Meanwhile, the limb I/R-induced inflammation and oxidative stress in skeletal muscles of mice were also inhibited by NBP. Mechanistic study indicated that the alleviatory effect of NBP was ascribed to inactivation of the HMGB1/TLR4/NF-κB pathway. Conclusions Our findings highlighted the potential of NBP as a novel strategy for limb I/R-driven muscle tissue damages by suppressing inflammatory response and oxidative stress via the HMGB1/TLR4/NF-κB pathway.
Collapse
|
5
|
Sun H, Wang J, Bi W, Zhang F, Chi K, Shi L, Yuan T, Ma K, Gao X. Sulforaphane Ameliorates Limb Ischemia/Reperfusion-Induced Muscular Injury in Mice by Inhibiting Pyroptosis and Autophagy via the Nrf2-ARE Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4653864. [PMID: 35600947 PMCID: PMC9117032 DOI: 10.1155/2022/4653864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Background Limb ischemia/reperfusion (I/R) injury, as a life-threatening syndrome, is commonly caused by skeletal muscle damage resulting from oxidative stress. Additionally, inflammation-induced pyroptosis and dysregulated autophagy are vital factors contributing to the aggravation of I/R injury. Of note, sulforaphane (SFN) is a natural antioxidant, but whether it worked in limb I/R injury and the possible mechanism behind its protection for skeletal muscle has not been clearly established. Methods Effects of SFN on limb I/R-injured skeletal muscle were assessed by HE staining, followed by assessment of wet weight/dry weight (W/D) ratio of muscle tissues. Next, ELISA and biochemical tests were used to measure the inflammatory cytokine production and oxidative stress. Immunofluorescent analysis and Western blot were adopted to examine the level of pyroptosis- and autophagy-related proteins in vivo. Moreover, protein levels of Nrf2-ARE pathway-related factors were also examined using Western blot. Results SFN treatment could protect skeletal muscle against limb I/R injury, as evidenced by diminished inflammation, pyroptosis, autophagy, and oxidative stress in skeletal muscles of mice. Further mechanistic exploration confirmed that antioxidative protection of SFN was associated with the Nrf2-ARE pathway activation. Conclusions SFN activates the Nrf2-ARE pathway, and thereby inhibits pyroptosis and autophagy and provides a novel therapeutic strategy for the limb I/R-induced muscle tissue damage.
Collapse
Affiliation(s)
- Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Wei Bi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Feng Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kui Chi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Long Shi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Tao Yuan
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kai Ma
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| |
Collapse
|
6
|
Stokes SC, Theodorou CM, Zakaluzny SA, DuBose JJ, Russo RM. Resuscitative endovascular balloon occlusion of the aorta in combat casualties: The past, present, and future. J Trauma Acute Care Surg 2021; 91:S56-S64. [PMID: 33797487 PMCID: PMC8324517 DOI: 10.1097/ta.0000000000003166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Noncompressible torso hemorrhage is a leading cause of preventable death on the battlefield. Intra-aortic balloon occlusion was first used in combat in the 1950s, but military use was rare before Operation Iraqi Freedom and Operation Enduring Freedom. During these wars, the combination of an increasing number of deployed vascular surgeons and a significant rise in deaths from hemorrhage resulted in novel adaptations of resuscitative endovascular balloon occlusion of the aorta (REBOA) technology, increasing its potential application in combat. We describe the background of REBOA development in response to a need for minimally invasive intervention for hemorrhage control and provide a detailed review of all published cases (n = 47) of REBOA use for combat casualties. The current limitations of REBOA are described, including distal ischemia and reperfusion injury, as well as ongoing research efforts to adapt REBOA for prolonged use in the austere setting. LEVEL OF EVIDENCE Level V.
Collapse
Affiliation(s)
- Sarah C. Stokes
- Department of Surgery, University of California-Davis, Sacramento, California
| | | | - Scott A. Zakaluzny
- Department of Surgery, University of California-Davis, Sacramento, California
- Department of General Surgery, David Grant USAF Medical Center, Travis, California
| | - Joseph J. DuBose
- Department of Vascular Surgery, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
- Department of Vascular Surgery, United States Air Force, Baltimore, Maryland
| | - Rachel M. Russo
- Department of Surgery, University of California-Davis, Sacramento, California
- Department of General Surgery, David Grant USAF Medical Center, Travis, California
| |
Collapse
|
7
|
Marsh AM, Betzold R, Rueda M, Morrow M, Lottenberg L, Borrego R, Ghneim M, DuBose JJ, Morrison JJ, Azar FK. Clinical Use of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) in the Management of Hemorrhage Control: Where Are We Now? CURRENT SURGERY REPORTS 2021. [DOI: 10.1007/s40137-021-00285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Thrailkill MA, Gladin KH, Thorpe CR, Roberts TR, Choi JH, Chung KK, Necsoiu CN, Rasmussen TE, Cancio LC, Batchinsky AI. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA): update and insights into current practices and future directions for research and implementation. Scand J Trauma Resusc Emerg Med 2021; 29:8. [PMID: 33407759 PMCID: PMC7789715 DOI: 10.1186/s13049-020-00807-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background In this review, we assess the state of Resuscitative Endovascular Occlusion of the Aorta (REBOA) today with respect to out-of-hospital (OOH) vs. inhospital (H) use in blunt and penetrating trauma, as well as discuss areas of promising research that may be key in further advancement of REBOA applications. Methods To analyze the trends in REBOA use, we conducted a review of the literature and identified articles with human or animal data that fit the respective inclusion and exclusion criteria. In separate tables, we compiled data extracted from selected articles in categories including injury type, zone and duration of REBOA, setting in which REBOA was performed, sample size, age, sex and outcome. Based on these tables as well as more detailed review of some key cases of REBOA usage, we assessed the current state of REBOA as well as coagulation and histological disturbances associated with its usage. All statistical tests were 2-sided using an alpha=0.05 for significance. Analysis was done using SAS 9.5 (Cary, NC). Tests for significance was done with a t-test for continuous data and a Chi Square Test for categorical data. Results In a total of 44 cases performed outside of a hospital in both military and civilian settings, the overall survival was found to be 88.6%, significantly higher than the 50.4% survival calculated from 1,807 cases of REBOA performed within a hospital (p<.0001). We observe from human data a propensity to use Zone I in penetrating trauma and Zone III in blunt injuries. We observe lower final metabolic markers in animal studies with shorter REBOA time and longer follow-up times. Conclusions Further research related to human use of REBOA must be focused on earlier initiation of REBOA after injury which may depend on development of rapid vascular access devices and techniques more so than on any new improvements in REBOA. Future animal studies should provide detailed multisystem organ assessment to accurately define organ injury and metabolic burden associated with REBOA application. Overall, animal studies must involve realistic models of injury with severe clinical scenarios approximating human trauma and exsanguination, especially with long-term follow-up after injury.
Collapse
Affiliation(s)
- Marianne A Thrailkill
- Glacier Technical Solutions, El Paso, TX, USA.,Extracorporeal Life Support Capability Area, United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, San Antonio, TX, 78234, USA
| | | | - Catherine R Thorpe
- Extracorporeal Life Support Capability Area, United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, San Antonio, TX, 78234, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Teryn R Roberts
- Extracorporeal Life Support Capability Area, United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, San Antonio, TX, 78234, USA.,Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, TX, USA
| | - Jae H Choi
- Extracorporeal Life Support Capability Area, United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, San Antonio, TX, 78234, USA.,Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, TX, USA
| | - Kevin K Chung
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Corina N Necsoiu
- Prolonged Field Care Capability Area, United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, San Antonio, TX, USA
| | - Todd E Rasmussen
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, San Antonio, TX, USA
| | - Andriy I Batchinsky
- Extracorporeal Life Support Capability Area, United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, San Antonio, TX, 78234, USA. .,Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, TX, USA.
| |
Collapse
|
9
|
Kashtan HW, Simon MA, Beyer CA, Wishy A, Hoareau GL, Grayson JK, Johnson MA. Effects of Extended Lower Extremity Cooling Following Zone 3 REBOA in a Porcine Hemorrhage Model. Mil Med 2020; 185:42-49. [PMID: 32074339 DOI: 10.1093/milmed/usz306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION External cooling of ischemic limbs has been shown to have a significant protective benefit for durations up to 4 hours. MATERIALS AND METHODS It was hypothesized that this benefit could be extended to 8 hours. Six swine were anesthetized and instrumented, then underwent a 25% total blood volume hemorrhage. Animals were randomized to hypothermia or normothermia followed by 8 hours of Zone 3 resuscitative endovascular balloon occlusion of the aorta, then resuscitation with shed blood, warming, and 3 hours of critical care. Physiologic parameters were continuously recorded, and laboratory specimens were obtained at regular intervals. RESULTS There were no significant differences between groups at baseline. There were no significant differences between creatine kinase in the hypothermia group when compared to the normothermia group (median [IQR] = 15,206 U/mL [12,476-19,987] vs 23,027 U/mL [18,745-26,843]); P = 0.13) at the end of the study. Similarly, serum myoglobin was also not significantly different in the hypothermia group after 8 hours (7,345 ng/mL [5,082-10,732] vs 5,126 ng/mL [4,720-5,298]; P = 0.28). No histologic differences were observed in hind limb skeletal muscle. CONCLUSION While external cooling during prolonged Zone 3 resuscitative endovascular balloon occlusion of the aorta appears to decrease ischemic muscle injury, this benefit appears to be time dependent. As the ischemic time approaches 8 hours, the benefit from hypothermia decreases.
Collapse
Affiliation(s)
- Harris W Kashtan
- Clinical Investigation Facility, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA.,Department of Surgery, University of California Davis Medical Center, 2221 Stockton Blvd, Sacramento, CA.,Department of General Surgery, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA
| | - Meryl A Simon
- Clinical Investigation Facility, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA.,Department of Surgery, University of California Davis Medical Center, 2221 Stockton Blvd, Sacramento, CA.,Heart, Lung, and Vascular Center, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA
| | - Carl A Beyer
- Clinical Investigation Facility, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA.,Department of Surgery, University of California Davis Medical Center, 2221 Stockton Blvd, Sacramento, CA.,Department of General Surgery, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA
| | - Andrew Wishy
- Clinical Investigation Facility, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA.,Department of Surgery, University of California Davis Medical Center, 2221 Stockton Blvd, Sacramento, CA.,Heart, Lung, and Vascular Center, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA
| | - Guillaume L Hoareau
- Clinical Investigation Facility, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA
| | - J Kevin Grayson
- Clinical Investigation Facility, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA
| | - M Austin Johnson
- Clinical Investigation Facility, David Grant USAF Medical Center, 101 Bodin Cir, Travis Air Force Base, CA.,Department of Emergency Medicine, University of California Davis Medical Center, 2315 Stockton Blvd, Sacramento, CA
| |
Collapse
|
10
|
Li Y, Jiang J, Tong L, Gao T, Bai L, Xue Q, Xing J, Wang Q, Lyu H, Cai M, Sun Z. Bilobalide protects against ischemia/reperfusion-induced oxidative stress and inflammatory responses via the MAPK/NF-휅B pathways in rats. BMC Musculoskelet Disord 2020; 21:449. [PMID: 32646398 PMCID: PMC7350583 DOI: 10.1186/s12891-020-03479-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Background Clinically, skeletal muscle ischemia/reperfusion injury is a life-threatening syndrome that is often caused by skeletal muscle damage and is characterized by oxidative stress and inflammatory responses. Bilobalide has been found to have antioxidative and anti-inflammatory effects. However, it is unclear whether bilobalide can protect skeletal muscle from ischemia/reperfusion injury. Methods The effects of bilobalide on ischemia/reperfusion-injured skeletal muscle were investigated by performing hematoxylin and eosin staining and assessing the wet weight/dry weight ratio of muscle tissue. Then, we measured lipid peroxidation, antioxidant activity and inflammatory cytokine levels. Moreover, Western blotting was conducted to examine the protein levels of MAPK/NF-휅B pathway members. Results Bilobalide treatment could protected hind limb skeletal muscle from ischemia/reperfusion injury by alleviating oxidative stress and inflammatory responses via the MAPK/NF-휅B pathways. Conclusions Bilobalide may be a promising drug for I/R-injured muscle tissue. However, the specific mechanisms for the protective effects still need further study.
Collapse
Affiliation(s)
- Ying Li
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Jiliang Jiang
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Liangcheng Tong
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Tingting Gao
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Lei Bai
- Department of Neurosurgery, Yulin First Hospital, the Second Affiliated Hospital of Yan'an University, Yulin, China
| | - Qing Xue
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Jianxin Xing
- Department of Orthopedics, Yuhuatai Hospital, Nanjing, China
| | - Qin Wang
- Department of Orthopedics, Zhangwenxin Hospital, Nanjing, China
| | - Haoran Lyu
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Min Cai
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Zhongyang Sun
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China.
| |
Collapse
|
11
|
Naito H, Nojima T, Fujisaki N, Tsukahara K, Yamamoto H, Yamada T, Aokage T, Yumoto T, Osako T, Nakao A. Therapeutic strategies for ischemia reperfusion injury in emergency medicine. Acute Med Surg 2020; 7:e501. [PMID: 32431842 PMCID: PMC7231568 DOI: 10.1002/ams2.501] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 01/13/2023] Open
Abstract
Ischemia reperfusion (IR) injury occurs when blood supply, perfusion, and concomitant reoxygenation is restored to an organ or area following an initial poor blood supply after a critical time period. Ischemia reperfusion injury contributes to mortality and morbidity in many pathological conditions in emergency medicine clinical practice, including trauma, ischemic stroke, myocardial infarction, and post‐cardiac arrest syndrome. The process of IR is multifactorial, and its pathogenesis involves several mechanisms. Reactive oxygen species are considered key molecules in reperfusion injury due to their potent oxidizing and reducing effects that directly damage cellular membranes by lipid peroxidation. In general, IR injury to an individual organ causes various pro‐inflammatory mediators to be released, which could then induce inflammation in remote organs, thereby possibly advancing the dysfunction of multiple organs. In this review, we summarize IR injury in emergency medicine. Potential therapies include pharmacological treatment, ischemic preconditioning, and the use of medical gases or vitamin therapy, which could significantly help experts develop strategies to inhibit IR injury.
Collapse
Affiliation(s)
- Hiromichi Naito
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Noritomo Fujisaki
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Kohei Tsukahara
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Hirotsugu Yamamoto
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Taihei Yamada
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Tetsuya Yumoto
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Takaaki Osako
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
12
|
Bartley MK. Managing noncompressible torso hemorrhage with REBOA. Nursing 2020; 50:24-29. [PMID: 32142014 DOI: 10.1097/01.nurse.0000657052.07696.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Resuscitative endovascular balloon occlusion of the aorta (REBOA) has reemerged as a treatment for noncompressible torso hemorrhage. This article discusses indications and contraindications for REBOA, describes the procedure, and reviews nursing considerations for patients undergoing REBOA.
Collapse
Affiliation(s)
- Marilynn Kyritsis Bartley
- At the time this article was written, Marilynn K. Bartley was an advanced practice nurse with the Christiana Care Health System Trauma Program in Wilmington, Del
| |
Collapse
|
13
|
Hoareau GL, Tibbits EM, Beyer CA, Simon MA, DeSoucy ES, Faulconer ER, Neff LP, Grayson JK, Stewart IJ, Williams TK, Johnson MA. Resuscitative Endovascular Balloon Occlusion of the Aorta: Review of the Literature and Applications to Veterinary Emergency and Critical Care. Front Vet Sci 2019; 6:197. [PMID: 31275952 PMCID: PMC6594359 DOI: 10.3389/fvets.2019.00197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
While hemorrhagic shock might be the result of various conditions, hemorrhage control and resuscitation are the corner stone of patient management. Hemorrhage control can prove challenging in both the acute care and surgical settings, especially in the abdomen, where no direct pressure can be applied onto the source of bleeding. Resuscitative endovascular balloon occlusion of the aorta (REBOA) has emerged as a promising replacement to resuscitative thoracotomy (RT) for the management of non-compressible torso hemorrhage in human trauma patients. By inflating a balloon at specific levels (or zones) of the aorta to interrupt blood flow, hemorrhage below the level of the balloon can be controlled. While REBOA allows for hemorrhage control and augmentation of blood pressure cranial to the balloon, it also exposes caudal tissue beds to ischemia and the whole body to reperfusion injury. We aim to introduce the advantages of REBOA while reviewing known limitations. This review outlines a step-by-step approach to REBOA implementation, and discusses common challenges observed both in human patients and during translational large animal studies. Currently accepted and debated indications for REBOA in humans are discussed. Finally, we review possible applications for veterinary patients and how REBOA has the potential to be translated into clinical veterinary practice.
Collapse
Affiliation(s)
- Guillaume L Hoareau
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States
| | - Emily M Tibbits
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Carl A Beyer
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Meryl A Simon
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Erik S DeSoucy
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | | | - Lucas P Neff
- Department of Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - J Kevin Grayson
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States
| | - Ian J Stewart
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Timothy K Williams
- Department of Vascular and Endovascular Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - M Austin Johnson
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|