1
|
Briody H, Hanneman K, Patlas MN. Applications of Artificial Intelligence in Acute Thoracic Imaging. Can Assoc Radiol J 2025:8465371251322705. [PMID: 39973060 DOI: 10.1177/08465371251322705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
The applications of artificial intelligence (AI) in radiology are rapidly advancing with AI algorithms being used in a wide range of disease pathologies and clinical settings. Acute thoracic pathologies including rib fractures, pneumothoraces, and acute PE are associated with significant morbidity and mortality and their identification is crucial for prompt treatment. AI models which increase diagnostic accuracy, improve radiologist efficiency and reduce time to diagnosis of acute abnormalities in the thorax have the potential to significantly improve patient outcomes. The purpose of this review is to summarize the current applications of AI in acute thoracic imaging, highlighting their strengths, limitations, and future research opportunities.
Collapse
Affiliation(s)
- Hayley Briody
- Department of Radiology, Beaumont Hospital, Dublin, Ireland
| | - Kate Hanneman
- Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | - Michael N Patlas
- Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| |
Collapse
|
2
|
Collins CE, Giammanco PA, Trivedi SM, Sarsour RO, Kricfalusi M, Elsissy JG. Diagnostic Accuracy of Artificial Intelligence for Detection of Rib Fracture on X-ray and Computed Tomography Imaging: A Systematic Review. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01412-x. [PMID: 39871041 DOI: 10.1007/s10278-025-01412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025]
Abstract
Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians. The objectives of this study are to analyze the performance of artificial intelligence in diagnosing rib fracture on X-ray and computed tomography (CT) scan using multiple clinical studies and to compare it to that of physicians findings of rib fracture. A literature search was conducted on PubMed and Embase for articles regarding the use of artificial intelligence for the detection of rib fractures up until July 2024. AI model, number of cases, sensitivity, and comparison to physicians data was collected. A total of 29 studies, comprising 125,364 cases, were included in this review. The pooled sensitivity of AI models was 0.853. Nineteen of these studies compared their results to radiologists, orthopedic surgeons, or anesthesiologists, totalling 61 physicians. Of these 19 studies, the radiologists had a pooled sensitivity of 0.750. The sensitivity of AI in these studies by comparison was 0.840. The results suggest that artificial intelligence has a promising role in detecting rib fractures on X-ray and CT scans. In our interpretation, the performance of artificial intelligence is similar to, or better than, that of physicians, alluding to its encouraging potential in a clinical setting as it may reduce physician workload, improve reading efficiency, and lead to better patient outcomes.
Collapse
Affiliation(s)
| | | | - Sunny M Trivedi
- Department of Orthopedic Surgery, Loma Linda University Health, Loma Linda, CA, USA
| | - Reem O Sarsour
- California University of Science and Medicine, Colton, CA, USA
| | | | - Joseph G Elsissy
- Department of Orthopedic Surgery, Arrowhead Regional Medical Center, Colton, CA, USA
| |
Collapse
|
3
|
Zhao T, Meng X, Wang Z, Hu Y, Fan H, Han J, Zhu N, Niu F. Diagnostic evaluation of blunt chest trauma by imaging-based application of artificial intelligence. Am J Emerg Med 2024; 85:35-43. [PMID: 39213808 DOI: 10.1016/j.ajem.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Artificial intelligence (AI) is becoming increasingly integral in clinical practice, such as during imaging tasks associated with the diagnosis and evaluation of blunt chest trauma (BCT). Due to significant advances in imaging-based deep learning, recent studies have demonstrated the efficacy of AI in the diagnosis of BCT, with a focus on rib fractures, pulmonary contusion, hemopneumothorax and others, demonstrating significant clinical progress. However, the complicated nature of BCT presents challenges in providing a comprehensive diagnosis and prognostic evaluation, and current deep learning research concentrates on specific clinical contexts, limiting its utility in addressing BCT intricacies. Here, we provide a review of the available evidence surrounding the potential utility of AI in BCT, and additionally identify the challenges impeding its development. This review offers insights on how to optimize the role of AI in the diagnostic evaluation of BCT, which can ultimately enhance patient care and outcomes in this critical clinical domain.
Collapse
Affiliation(s)
- Tingting Zhao
- The Department of Radiology, Tianjin University Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin University, Tianjin, China
| | - Xianghong Meng
- The Department of Radiology, Tianjin University Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin University, Tianjin, China.
| | - Zhi Wang
- The Department of Radiology, Tianjin University Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin University, Tianjin, China.
| | - Yongcheng Hu
- The Department of Radiology, Tianjin University Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China
| | - Hongxing Fan
- The Department of Radiology, Tianjin University Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China
| | - Jun Han
- The Department of Radiology, Tianjin University Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin University, Tianjin, China
| | - Nana Zhu
- The Department of Radiology, Tianjin University Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China
| | - Feige Niu
- The Department of Radiology, Tianjin University Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
FasterRib: A deep learning algorithm to automate identification and characterization of rib fractures on chest computed tomography scans: Erratum. J Trauma Acute Care Surg 2024; 97:e18. [PMID: 38996424 DOI: 10.1097/ta.0000000000004427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
|
5
|
Cheng CT, Ooyang CH, Liao CH, Kang SC. Applications of deep learning in trauma radiology: A narrative review. Biomed J 2024; 48:100743. [PMID: 38679199 PMCID: PMC11751421 DOI: 10.1016/j.bj.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Diagnostic imaging is essential in modern trauma care for initial evaluation and identifying injuries requiring intervention. Deep learning (DL) has become mainstream in medical image analysis and has shown promising efficacy for classification, segmentation, and lesion detection. This narrative review provides the fundamental concepts for developing DL algorithms in trauma imaging and presents an overview of current progress in each modality. DL has been applied to detect free fluid on Focused Assessment with Sonography for Trauma (FAST), traumatic findings on chest and pelvic X-rays, and computed tomography (CT) scans, identify intracranial hemorrhage on head CT, detect vertebral fractures, and identify injuries to organs like the spleen, liver, and lungs on abdominal and chest CT. Future directions involve expanding dataset size and diversity through federated learning, enhancing model explainability and transparency to build clinician trust, and integrating multimodal data to provide more meaningful insights into traumatic injuries. Though some commercial artificial intelligence products are Food and Drug Administration-approved for clinical use in the trauma field, adoption remains limited, highlighting the need for multi-disciplinary teams to engineer practical, real-world solutions. Overall, DL shows immense potential to improve the efficiency and accuracy of trauma imaging, but thoughtful development and validation are critical to ensure these technologies positively impact patient care.
Collapse
Affiliation(s)
- Chi-Tung Cheng
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hsiang Ooyang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chien-Hung Liao
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shih-Ching Kang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Villarreal JA, Forrester JD. Eyes on the prize: harnessing computer vision for automated detection of traumatic rib and clavicle fractures in chest radiographs. Trauma Surg Acute Care Open 2024; 9:e001455. [PMID: 38646616 PMCID: PMC11029340 DOI: 10.1136/tsaco-2024-001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Affiliation(s)
- Joshua Aaron Villarreal
- Department of Surgery, Stanford University Department of Medicine, Stanford, California, USA
| | - Joseph D Forrester
- Department of Surgery, Stanford University Department of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Lopez-Melia M, Magnin V, Marchand-Maillet S, Grabherr S. Deep learning for acute rib fracture detection in CT data: a systematic review and meta-analysis. Br J Radiol 2024; 97:535-543. [PMID: 38323515 PMCID: PMC11027249 DOI: 10.1093/bjr/tqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/16/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVES To review studies on deep learning (DL) models for classification, detection, and segmentation of rib fractures in CT data, to determine their risk of bias (ROB), and to analyse the performance of acute rib fracture detection models. METHODS Research articles written in English were retrieved from PubMed, Embase, and Web of Science in April 2023. A study was only included if a DL model was used to classify, detect, or segment rib fractures, and only if the model was trained with CT data from humans. For the ROB assessment, the Quality Assessment of Diagnostic Accuracy Studies tool was used. The performance of acute rib fracture detection models was meta-analysed with forest plots. RESULTS A total of 27 studies were selected. About 75% of the studies have ROB by not reporting the patient selection criteria, including control patients or using 5-mm slice thickness CT scans. The sensitivity, precision, and F1-score of the subgroup of low ROB studies were 89.60% (95%CI, 86.31%-92.90%), 84.89% (95%CI, 81.59%-88.18%), and 86.66% (95%CI, 84.62%-88.71%), respectively. The ROB subgroup differences test for the F1-score led to a p-value below 0.1. CONCLUSION ROB in studies mostly stems from an inappropriate patient and data selection. The studies with low ROB have better F1-score in acute rib fracture detection using DL models. ADVANCES IN KNOWLEDGE This systematic review will be a reference to the taxonomy of the current status of rib fracture detection with DL models, and upcoming studies will benefit from our data extraction, our ROB assessment, and our meta-analysis.
Collapse
Affiliation(s)
- Manel Lopez-Melia
- University Centre of Legal Medicine Lausanne-Geneva, Geneva 1206, Switzerland
- University Hospital and University of Geneva, Geneva 1205, Switzerland
| | - Virginie Magnin
- University Centre of Legal Medicine Lausanne-Geneva, Geneva 1206, Switzerland
- University Hospital and University of Geneva, Geneva 1205, Switzerland
- University Hospital and University of Lausanne, Lausanne 1005, Switzerland
| | | | - Silke Grabherr
- University Centre of Legal Medicine Lausanne-Geneva, Geneva 1206, Switzerland
- University Hospital and University of Geneva, Geneva 1205, Switzerland
- University Hospital and University of Lausanne, Lausanne 1005, Switzerland
| |
Collapse
|