1
|
Anand T, Shin H, Ratnasekera A, Tran ML, Huckeby R, Butts L, Stejskal I, Magnotti LJ, Joseph B. Rethinking Balanced Resuscitation in Trauma. J Clin Med 2025; 14:2111. [PMID: 40142918 PMCID: PMC11943041 DOI: 10.3390/jcm14062111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Hemorrhagic shock from traumatic injury results in a massive systemic response with activation of the hypothalamic-pituitary-adrenal (HPA) axis, pro-thrombotic and clot-lysis pathways as well as development of an endotheliopathy. With ongoing hemorrhage, these responses become dysregulated and are associated with worsening coagulopathy, microvascular dysfunction, and increased transfusion requirements. Our transfusion practices as well as our understanding of the molecular response to hemorrhage have undergone significant advancement during war. Currently, resuscitation practices address the benefit of the early recognition and management of acute coagulopathy and advocates for balanced resuscitation with either whole blood or a 1:1 ratio of packed red blood cells to fresh frozen plasma (respectively). However, a significant volume of evidence in the last two decades has recognized the importance of the early modulation of traumatic endotheliopathy and the HPA axis via the early administration of plasma, whole blood, and adjunctive treatments such as tranexamic acid (TXA) and calcium. This evidence compels us to rethink our understanding of 'balanced resuscitation' and begin creating a more structured practice to address additional competing priorities beyond coagulopathy. The following manuscript reviews the benefits of addressing the additional interrelated physiologic responses to hemorrhage and seeks to expand beyond our understanding of 'balanced resuscitation'.
Collapse
Affiliation(s)
- Tanya Anand
- Department of Surgery, Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, University of Arizona, Tucson, AZ 85721, USA (A.R.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Packialakshmi B, Burmeister DM, Anderson JA, Morgan J, Cannon G, Kiang JG, Feng Y, Lee S, Stewart IJ, Zhou X. A clinically-relevant mouse model that displays hemorrhage exacerbates tourniquet-induced acute kidney injury. Front Physiol 2023; 14:1240352. [PMID: 38028812 PMCID: PMC10663317 DOI: 10.3389/fphys.2023.1240352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Hemorrhage is a leading cause of death in trauma. Tourniquets are effective at controlling extremity hemorrhage and have saved lives. However, tourniquets can cause ischemia reperfusion injury of limbs, leading to systemic inflammation and other adverse effects, which results in secondary damage to the kidney, lung, and liver. A clinically relevant animal model is critical to understanding the pathophysiology of this process and developing therapeutic interventions. Despite the importance of animal models, tourniquet-induced lower limb ischemia/reperfusion (TILLIR) models to date lack a hemorrhage component. We sought to develop a new TILLIR model that included hemorrhage and analyze the subsequent impact on kidney, lung and liver injuries. Four groups of mice were examined: group 1) control, group 2) hemorrhage, group 3) tourniquet application, and group 4) hemorrhage and tourniquet application. The hemorrhagic injury consisted of the removal of 15% of blood volume through the submandibular vein. The tourniquet injury consisted of orthodontic rubber bands applied to the inguinal area bilaterally for 80 min. Mice were then placed in metabolic cages individually for 22 h to collect urine. Hemorrhage alone did not significantly affect transcutaneous glomerular filtration rate (tGFR), blood urea nitrogen (BUN) or urinary kidney injury molecule-1 (KIM-1) levels. Without hemorrhage, TILLIR decreased tGFR by 46%, increased BUN by 162%, and increased KIM-1 by 27% (p < 0.05 for all). With hemorrhage, TILLIR decreased the tGFR by 72%, increased BUN by 395%, and increased urinary KIM-1 by 37% (p < 0.05 for all). These differences were statistically significant (p < 0.05). While hemorrhage had no significant effect on TILLIR-induced renal tubular degeneration and necrosis, it significantly increased TILLIR-induced lung total injury scores and congestion, and fatty liver. In conclusion, hemorrhage exacerbates TILLIR-induced acute kidney injury and structural damage in the lung and liver.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David M. Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joseph A. Anderson
- Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Judah Morgan
- Internal Medicine Residency Program at Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, WA, United States
| | - Georgetta Cannon
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Juliann G. Kiang
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sang Lee
- Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ian J. Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
3
|
Dieteren S, Franz N, Köhler K, Nowak A, Ehnert S, Surov A, Krüger M, Marzi I, Wagner N, Relja B. Ethyl Pyruvate Reduces Systemic Leukocyte Activation via Caspase-1 and NF-κB After Blunt Chest Trauma and Haemorrhagic Shock. Front Med (Lausanne) 2020; 7:562904. [PMID: 33117829 PMCID: PMC7562791 DOI: 10.3389/fmed.2020.562904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Blunt chest (thoracic) trauma (TxT) and haemorrhagic shock with subsequent resuscitation (H/R) induce strong systemic and local inflammatory response, which is closely associated with apoptotic cell loss and subsequently impaired organ function. The underlying mechanisms are not completely understood, therefore, the treatment of patients suffering from TxT+H/R is challenging. In our recent studies, we have demonstrated local anti-inflammatory effects of ethyl pyruvate (EtP) in lung and liver after TxT+H/R. Here, the therapeutic potential of a reperfusion regime with EtP on the early post-traumatic systemic inflammatory response and apoptotic changes after TxT followed by H/R were investigated. Methods: Female Lewis rats underwent TxT followed by haemorrhagic shock (60 min). Resuscitation was performed with own blood transfusion and either lactated Ringers solution (LR) or LR supplemented with EtP (50 mg/kg). Sham group underwent the surgical procedures. After 2 h blood as well as lung and liver tissues were obtained for analyses. Systemic activation of neutrophils (expression of CD11b and CD62L), leukocyte phagocytosis, apoptosis (caspase-3/7 activation), pyroptosis (caspase-1 activation) and NF-κB p65 activity were assessed. p < 0.05 was considered significant. Results: TxT+H/R-induced systemic activation of neutrophils (increased CD11b and reduced CD62L expression) was significantly reduced by EtP. Trauma-induced delayed neutrophil apoptosis was further reduced by EtP reperfusion but remained unaltered in monocytes. Reperfusion with EtP significantly increased the phagocytizing capacity of granulocytes. Trauma-induced inflammasome activation, which was observed in monocytes and not in neutrophils, was significantly reduced by EtP in both cell entities. NF-κB p65 activation, which was increased in neutrophils and monocytes was significantly decreased in monocytes. Conclusion: TxT+H/R-induced systemic activation of both neutrophils and monocytes concomitant with increased systemic inflammation was reduced by a reperfusion with EtP and was associated with a down-regulation of NF-κB p65 activation.
Collapse
Affiliation(s)
- Scott Dieteren
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany.,Department of Trauma, Hand and Reconstructive Surgery, University Hospital of the Goethe University Frankfurt, Frankfurt, Germany
| | - Niklas Franz
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of the Goethe University Frankfurt, Frankfurt, Germany
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Aleksander Nowak
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Alexey Surov
- Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of the Goethe University Frankfurt, Frankfurt, Germany
| | - Nils Wagner
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of the Goethe University Frankfurt, Frankfurt, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
4
|
Soliman M. Protective Effects of Estradiol on Myocardial Contractile Function Following Hemorrhagic Shock and Resuscitation in Rats. Chin Med J (Engl) 2016; 128:2360-4. [PMID: 26315085 PMCID: PMC4733800 DOI: 10.4103/0366-6999.163390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Hemorrhagic shock (HS) results in myocardial contractile dysfunction. Studies showed that 17β-estradiol protects the myocardium against contractile dysfunction. The study investigated the cardioprotective effects of treatment with 17β-estradiol before resuscitation following 1 h of HS and resuscitation. METHODS Male Sprague-Dawley rats were assigned to 2 sets of experimental protocols: Ex vivo and in vivo treatment and resuscitation. Each set had three experimental groups (n = 6 per group): Normotensive (N), HS and resuscitation (HS-R) and HS rats treated with 17β-estradiol (E) and resuscitated (HS-E-R). Rats were hemorrhaged over 60-min to reach a mean arterial blood pressure of 40 mmHg. In the ex vivo group, hearts were resuscitated by perfusion in the Langendorff system. In the 17β-estradiol treated group, 17β-estradiol 280 µg/kg was added for thefirst 5 min. Cardiac function was measured. Left ventricular generated pressure (LVGP) and +dP/dt were calculated. In the in vivo group, rats were treated with 17β-estradiol 280 µg/kg s.c. after 60-min HS. Resuscitation was performed in vivo by the reinfusion of the shed blood for 30-min to restore normotension. RESULTS Treatment with 17β-estradiol before resuscitation in ex vivo treated and resuscitated isolated hearts and in the in vivo treated and resuscitated rats following HS improved myocardial contractile function. In the in vivo treated group, LVGP and +dP/dt max were significantly higher in 17β-estradiol treated rats compared to the untreated group (LVGP 136.40 ± 6.61 compared to 47.58 ± 17.55, and +dP/dt 661.85 ± 49.88 compared to 88.18 ± 0.85). Treatment with 17β-estradiol improved LVGP following HS. CONCLUSIONS The results indicate that treatment with 17β-estradiol before resuscitation following HS protects the myocardium against dysfunction.
Collapse
Affiliation(s)
- Mona Soliman
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
5
|
The Effect of Perioperative Ischemia and Reperfusion on Multiorgan Dysfunction following Abdominal Aortic Aneurysm Repair. BIOMED RESEARCH INTERNATIONAL 2015; 2015:598980. [PMID: 26798637 PMCID: PMC4698535 DOI: 10.1155/2015/598980] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/30/2015] [Accepted: 09/07/2015] [Indexed: 12/03/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are relatively common and are potentially life-threatening medical problems. The aim of this review is to provide an overview of the effect of I/R injury on multiorgan failure following AAA repair. The PubMed, CINAHL, EMBASE, Medline, Cochrane Review, and Scopus databases were comprehensively searched for articles concerning the pathophysiology of I/R and its systemic effects. Cross-referencing was performed using the bibliographies from the articles obtained. Articles retrieved were restricted to those published in English. One of the most prominent characteristics of AAA open repair is the double physiological phenomenon of ischemia-reperfusion (I/R) that happens either at the time of clamping or following the aortic clamp removal. Ischemia-reperfusion injury causes significant pathophysiological disturbances to distant organs, increasing the possibility for postoperative multiorgan failure. Although tissue injury is mediated by diverse mechanisms, microvascular dysfunction seems to be the final outcome of I/R.
Collapse
|
6
|
RELJA B, OMID N, WAGNER N, MÖRS K, WERNER I, JUENGEL E, PERL M, MARZI I. Ethanol, ethyl and sodium pyruvate decrease the inflammatory responses of human lung epithelial cells via Akt and NF-κB in vitro but have a low impact on hepatocellular cells. Int J Mol Med 2015; 37:517-25. [DOI: 10.3892/ijmm.2015.2431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/02/2015] [Indexed: 11/05/2022] Open
|
7
|
Soliman M, Arafah M. Apelin protect against multiple organ injury following hemorrhagic shock and decrease the inflammatory response. Int J Appl Basic Med Res 2015; 5:195-9. [PMID: 26539370 PMCID: PMC4606580 DOI: 10.4103/2229-516x.165377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Hemorrhagic shock (HS) result in multiple organ injury and inflammatory response that lead to death. The exact mechanism is not clear. Apelin is an endogenous ligand of orphan G-protein coupled receptor APJ. Apelin has anti-inflammatory effects on the release of inflammatory mediators. OBJECTIVES To examine the protective effects of apelin against multiple organ injury and the possible involvement of inflammatory pathways. METHODOLOGY Male Sprague-Dawley rats (300-350 g) were subjected to hemorrhage over 60 min to reach a mean arterial blood pressure of 40 mmHg. Then, rats were treated or not with 1 mL of 10 nm/L apelin-13 intraarterially resuscitation was performed in vivo by the reinfusion of the shed blood for 30 min to restore normotension. Blood samples were collected for measurement of tumor necrosis factor (TNF) using ELISA (R and D systems). Biopsies were obtained from organs for light microscopic examination. RESULTS HS rats showed significant increase the levels of TNF. Apelin significantly lowered the production of TNF-α. Histological examination of hemorrhagic shocked untreated rats revealed structural damage. Less histological damage was observed in the organs of treated rats. Apelin-treatment decreased the number of inflammatory cells and mitochondrial swollen in cells. CONCLUSION Treatment with apelin before resuscitation protects against multiple organ injury in HS by attenuation the inflammatory response and might be a therapeutic target for HS.
Collapse
Affiliation(s)
- Mona Soliman
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Maha Arafah
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
8
|
Jiang Z, Li X, Lin Z, Chen J, Guan X, Chen M. Ethyl pyruvate reduces hepatic mitochondrial swelling and dysfunction in a rat model of sepsis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7774-7785. [PMID: 26339342 PMCID: PMC4555670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/26/2015] [Indexed: 06/05/2023]
Abstract
Sepsis causes mitochondrial oxidative injury and swelling. Ethyl pyruvate (EP) is a cytoprotective agent, while aquaporin-8 (AQP8) is a mitochondrial water channel that can induce mitochondrial swelling. We assessed whether EP protects mitochondria during sepsis, and whether AQP8 contributes to the underlying mechanisms. A cecal ligation and puncture (CLP) sepsis model was established in Sprague-Dawley rats, randomized to 3 groups: sham (n=20), CLP (n=59) and CLP+EP (n=51). All rats received postoperative intraperitoneal fluid resuscitation (30 ml/kg); the CLP+EP group also received intraperitoneal EP (100 mg/kg). Survival was assessed at 24 hours. Hepatic mitochondrial ultrastructure was characterized by electron microscopy. The membrane potential of isolated hepatic mitochondria was determined using JC-1 and flow cytometry. Mitochondrial AQP8 expression and cytochrome C (Cyt C) release were measured by Western blotting (values normalized to ß-actin). Survival in the sham, CLP and CLP+EP groups was 100%, 21% and 41%, respectively. Mitochondrial cross-sectional area was smaller in the CLP+EP group than in the CLP group (0.231±0.110 vs. 0.641±0.460 µm(2); P<0.001), with a tendency for a lower form factor (a measure of contour irregularity) in the CLP+EP group. Mitochondrial depolarization by CLP was inhibited by EP. Mitochondrial Cyt C release was higher in the CLP group than in the sham (1.211±0.24 vs. 0.48±0.03) or CLP+EP (0.35±0.39) groups. AQP8 expression was similar between groups, with a trend for lower expression in the CLP+EP group compared with the CLP group. EP improves sepsis outcome by targeting the mitochondrion, possibly through modulation of AQP8 expression.
Collapse
Affiliation(s)
- Zhiyi Jiang
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Xiaoyue Li
- Department of Surgical Intensive Care Unit, The Dongguan People’s HospitalDongguan, Guangdong, China
| | - Zongqin Lin
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Juan Chen
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Xiangdong Guan
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Minying Chen
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
9
|
Myeloid knockout of HIF-1 α does not markedly affect hemorrhage/resuscitation-induced inflammation and hepatic injury. Mediators Inflamm 2014; 2014:930419. [PMID: 24991092 PMCID: PMC4058797 DOI: 10.1155/2014/930419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hypoxia-inducible factor-1 α (HIF-1 α ) and NF- κ B play important roles in the inflammatory response after hemorrhagic shock and resuscitation (H/R). Here, the role of myeloid HIF-1 α in liver hypoxia, injury, and inflammation after H/R with special regard to NF- κ B activation was studied. METHODS Mice with a conditional HIF-1 α knockout (KO) in myeloid cell-line and wild-type (WT) controls were hemorrhaged for 90 min (30 ± 2 mm Hg) and resuscitated. Controls underwent only surgical procedures. RESULTS After six hours, H/R enhanced the expression of HIF-1 α -induced genes vascular endothelial growth factor (VEGF) and adrenomedullin (ADM). In KO mice, this was not observed. H/R-induced liver injury in HIF-1 α KO was comparable to WT. Elevated plasma interleukin-6 (IL-6) levels after H/R were not reduced by HIF-1 α KO. Local hepatic hypoxia was not significantly reduced in HIF-1 α KO compared to controls after H/R. H/R-induced NF- κB phosphorylation in liver did not significantly differ between WT and KO. CONCLUSIONS Here, deleting HIF-1 α in myeloid cells and thereby in Kupffer cells was not protective after H/R. This data indicates that other factors, such as NF- κB, due to its upregulated phosphorylation in WT and KO mice, contrary to HIF-1 α, are rather key modulators of inflammation after H/R in our model.
Collapse
|
10
|
Role of ethyl pyruvate in systemic inflammatory response and lung injury in an experimental model of ruptured abdominal aortic aneurysm. BIOMED RESEARCH INTERNATIONAL 2014; 2014:857109. [PMID: 24575415 PMCID: PMC3915710 DOI: 10.1155/2014/857109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/07/2013] [Indexed: 12/27/2022]
Abstract
Objectıve. The purpose of this study is to evaluate the effect of ethyl pyruvate (EP) on systemic inflammatory response and lung injury in an experimental rat model of ruptured abdominal aortic anurysm (RAAA). Methods. Anaesthetized 30 Sprague-Dawley male rats were randomized to sham (Sh n : 6) (Sh + EP n : 6) or shock and clamp (S/C) groups (S/C n : 9) (S/C + EP n : 9). In the S/C and S/C + EP groups, hemorrhagic shock, lower torso ischemia, and reperfusion were created, S/C group was given 1 mL saline and S/C + EP group was given 40 mg/kg EP. At the end of reperfusion process some biochemical and histological parameters were studied in serum and lung tissues. Results. An increase was observed in all parameters except interleukin-6 (IL-6) in the S/C group in comparison to the sham groups. In the S/C + EP group, serum myeloperoxydase (MPO), malondialdehyde (MDA), and tumor necrosis factor alpha (TNF-α) as well as lung MPO and MDA values decreased significantly (P < 0.016). In the lung tissues, histological injury scores and lung tissue wet/dry ratio were significantly decreased in the S/C + EP group as compared to the S/C group (P < 0.016). Conclusions. Ethyl pyruvate may reduce systemic inflammatory response and lung injury which resulted from shock and ischemia/reperfusion in an experimental model of RAAA.
Collapse
|
11
|
Activation of toll-like receptor 4 is necessary for trauma hemorrhagic shock-induced gut injury and polymorphonuclear neutrophil priming. Shock 2012; 38:107-14. [PMID: 22575992 DOI: 10.1097/shk.0b013e318257123a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interactions of toll-like receptors (TLRs) with nonmicrobial factors play a major role in the pathogenesis of early trauma-hemorrhagic shock (T/HS)-induced organ injury and inflammation. Thus, we tested the hypothesis that TLR4 mutant (TLR4 mut) mice would be more resistant to T/HS-induced gut injury and polymorphonuclear neutrophil (PMN) priming than their wild-type littermates and found that both were significantly reduced in the TLR4 mut mice. In addition, the in vivo and ex vivo PMN priming effect of T/HS intestinal lymph observed in the wild-type mice was abrogated in TLR4 mut mice as well the TRIF mut-deficient mice and partially attenuated in Myd88 mice, suggesting that TRIF activation played a more predominant role than MyD88 in T/HS lymph-induced PMN priming. Polymorphonuclear neutrophil depletion studies showed that T/HS lymph-induced acute lung injury was PMN dependent, because lung injury was totally abrogated in PMN-depleted animals. Because the lymph samples were sterile and devoid of endotoxin or bacterial DNA, we investigated whether the effects of T/HS lymph was related to endogenous nonmicrobial TLR4 ligands. High-mobility group box 1 protein 1, heat shock protein 70, heat shock protein 27, and hyaluronic acid all have been implicated in ischemia-reperfusion-induced tissue injury. None of these "danger" proteins appeared to be involved, because their levels were similar between the sham and shock lymph samples. In conclusion, TLR4 activation is important in T/HS-induced gut injury and in T/HS lymph-induced PMN priming and lung injury. However, the T/HS-associated effects of TLR4 on gut barrier dysfunction can be uncoupled from the T/HS lymph-associated effects of TLR4 on PMN priming.
Collapse
|
12
|
Klemcke HG, Joe B, Rose R, Ryan KL. Life or death? A physiogenomic approach to understand individual variation in responses to hemorrhagic shock. Curr Genomics 2011; 12:428-42. [PMID: 22379396 PMCID: PMC3178911 DOI: 10.2174/138920211797248574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 11/22/2022] Open
Abstract
Severe hemorrhage due to trauma is a major cause of death throughout the world. It has often been observed that some victims are able to withstand hemorrhage better than others. For decades investigators have attempted to identify physiological mechanisms that distinguish survivors from nonsurvivors for the purpose of providing more informed therapies. As an alternative approach to address this issue, we have initiated a research program to identify genes and genetic mechanisms that contribute to this phenotype of survival time after controlled hemorrhage. From physiogenomic studies using inbred rat strains, we have demonstrated that this phenotype is a heritable quantitative trait, and is therefore a complex trait regulated by multiple genes. Our work continues to identify quantitative trait loci as well as potential epigenetic mechanisms that might influence survival time after severe hemorrhage. Our ultimate goal is to improve survival to traumatic hemorrhage and attendant shock via regulation of genetic mechanisms and to provide knowledge that will lead to genetically-informed personalized treatments.
Collapse
Affiliation(s)
- Harold G Klemcke
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Rajiv Rose
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Kathy L Ryan
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
13
|
|
14
|
Current world literature. Curr Opin Anaesthesiol 2010; 23:283-93. [PMID: 20404787 DOI: 10.1097/aco.0b013e328337578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
The biochemical basis for the anti-inflammatory and cytoprotective actions of ethyl pyruvate and related compounds. Biochem Pharmacol 2010; 80:151-9. [PMID: 20230800 DOI: 10.1016/j.bcp.2010.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 12/12/2022]
Abstract
Pyruvate is an important metabolic intermediate, and also is an effective scavenger of hydrogen peroxide and other reactive oxygen species (ROS). Pharmacological administration of pyruvate has been shown to improve organ function in animal models of oxidant-mediated cellular injury. However, pyruvate is relatively unstable in aqueous solutions, which could limit the therapeutic potential of this compound. Ethyl pyruvate (EP), a simple derivative of pyruvic acid, is also an ROS scavenger, but seems to exert pharmacological effects, such as suppression of inflammation, which are at least quantitatively different and in some instances are qualitatively distinct from those exerted by pyruvate anion. Treatment with EP has been shown to improve survival and/or ameliorate organ dysfunction in a wide variety of pre-clinical models of acute illnesses, such as severe sepsis, acute pancreatitis and stroke. Using other animal models, some studies have demonstrated that more prolonged treatment with EP can ameliorate inflammatory bowel disease or slow the rate of growth of malignant tumors. In a clinical trial of patients undergoing cardiac surgery, treatment with EP was shown to be safe, but it failed to improve outcome. The true therapeutic potential of EP and related compounds remains to be elucidated. In this review, some of the biochemical mechanisms, which might be responsible for the pharmacological effects of EP, are discussed.
Collapse
|