1
|
Dangare MS, Saklecha A, Harjpal P. A Case Report Emphasizing an Early Approach in a Patient With Diffuse Axonal Injury. Cureus 2024; 16:e52750. [PMID: 38389626 PMCID: PMC10882254 DOI: 10.7759/cureus.52750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Diffuse axonal injury (DAI) is a severe and frequently life-altering form of traumatic brain injury that is brought on by forces of rapid acceleration as well as deceleration impacting the brain. DAI primarily stems from mechanical forces that lead to the widespread disruption of axons throughout the brain. Unlike focal injuries that affect a specific brain region, DAI manifests as multifocal axonal damage, often impairing vital neural connections. This injury occurs due to shear and tensile forces during traumatic events, such as car accidents, falls, and sports-related incidents. This current case report includes a 19-year-old male who had a fall from his bike and was hospitalised with brain trauma. A Magnetic resonance imaging (MRI) scan was done, which revealed a case of DAI, and a computed tomography (CT) scan of the brain revealed the extra-calvarial soft tissue swelling in the left parietal region. Small haemorrhagic contusions involved the right ganglio-capsular region. Several integrative techniques, including joint approximation, proprioceptive neuromuscular facilitation (PNF) rhythmic initiation, D1 flexion-extension, and patient education, were used to manage the patient. The patient's development was evaluated using outcome measures, such as the functional independence measure (FIM) and the Glasgow coma scale (GCS). Thus, we conclude that completing physiotherapy exercises consistently helps patients achieve their highest level of functional independence and also enhances their quality of life.
Collapse
Affiliation(s)
- Mansee S Dangare
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akshaya Saklecha
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pallavi Harjpal
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
UPLC/Q-TOF MS-Based Urine Metabonomics Study to Identify Diffuse Axonal Injury Biomarkers in Rat. DISEASE MARKERS 2022; 2022:2579489. [PMID: 36188427 PMCID: PMC9519327 DOI: 10.1155/2022/2579489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Diffuse axonal injury (DAI) represents a frequent traumatic brain injury (TBI) type, significantly contributing to the dismal neurological prognosis and high mortality in TBI patients. The increase in mortality can be associated with delayed and nonspecific initial symptoms in DAI patients. Additionally, the existing approaches for diagnosis and monitoring are either low sensitivity or high cost. Therefore, novel, reliable, and objective diagnostic markers should be developed to diagnose and monitor DAI prognosis. Urine is an optimal sample to detect biomarkers for DAI noninvasively. Therefore, the DAI rat model was established in this work. Meanwhile, the ultraperformance liquid chromatography quadrupole-time-of-flight hybrid mass spectrometry- (UPLC/Q-TOF MS-) untargeted metabolomics approach was utilized to identify the features of urine metabolomics to diagnose DAI. This work included 57 metabolites with significant alterations and 21 abnormal metabolic pathways from the injury groups. Three metabolites, viz., urea, butyric acid, and taurine, were identified as possible biomarkers to diagnose DAI based on the great fold changes (FCs) and biological functions during DAI. The present study detected several novel biomarkers for noninvasively diagnosing and monitoring DAI and helped understand the DAI-associated metabolic events.
Collapse
|
3
|
Axonal injury is detected by βAPP immunohistochemistry in rapid death from head injury following road traffic collision. Int J Legal Med 2022; 136:1321-1339. [PMID: 35488928 PMCID: PMC9375765 DOI: 10.1007/s00414-022-02807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
Abstract
The accumulation of βAPP caused by axonal injury is an active energy-dependent process thought to require blood circulation; therefore, it is closely related to the post-injury survival time. Currently, the earliest reported time at which axonal injury can be detected in post-mortem traumatic brain injury (TBI) tissue by βAPP (Beta Amyloid Precursor Protein) immunohistochemistry is 35 min. The aim of this study is to investigate whether βAPP staining for axonal injury can be detected in patients who died rapidly after TBI in road traffic collision (RTC), in a period of less than 30 min. We retrospectively studied thirty-seven patients (group 1) died very rapidly at the scene; evidenced by forensic assessment of injuries short survival, four patients died after a survival period of between 31 min and 12 h (group 2) and eight patients between 2 and 31 days (group 3). The brains were comprehensively examined and sampled at the time of the autopsy, and βAPP immunohistochemistry carried out on sections from a number of brain areas. βAPP immunoreactivity was demonstrated in 35/37 brains in group 1, albeit with a low frequency and in a variable pattern, and with more intensity and frequency in all brains of group 2 and 7/8 brains from group 3, compared with no similar βAPP immunoreactivity in the control group. The results suggest axonal injury can be detected in those who died rapidly after RTC in a period of less than 30 min, which can help in the diagnosis of severe TBI with short survival time.
Collapse
|
4
|
Wu Z, Chen C, Kang SS, Liu X, Gu X, Yu SP, Keene CD, Cheng L, Ye K. Neurotrophic signaling deficiency exacerbates environmental risks for Alzheimer's disease pathogenesis. Proc Natl Acad Sci U S A 2021; 118:e2100986118. [PMID: 34140411 PMCID: PMC8237621 DOI: 10.1073/pnas.2100986118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanism of Alzheimer's disease (AD) pathogenesis remains obscure. Life and/or environmental events, such as traumatic brain injury (TBI), high-fat diet (HFD), and chronic cerebral hypoperfusion (CCH), are proposed exogenous risk factors for AD. BDNF/TrkB, an essential neurotrophic signaling for synaptic plasticity and neuronal survival, are reduced in the aged brain and in AD patients. Here, we show that environmental factors activate C/EBPβ, an inflammatory transcription factor, which subsequently up-regulates δ-secretase that simultaneously cleaves both APP and Tau, triggering AD neuropathological changes. These adverse effects are additively exacerbated in BDNF+/- or TrkB+/- mice. Strikingly, TBI provokes both senile plaque deposit and neurofibrillary tangles (NFT) formation in TrkB+/- mice, associated with augmented neuroinflammation and extensive neuronal loss, leading to cognitive deficits. Depletion of C/EBPβ inhibits TBI-induced AD-like pathologies in these mice. Remarkably, amyloid aggregates and NFT are tempospatially distributed in TrkB+/- mice brains after TBI, providing insight into their spreading in the progression of AD-like pathologies. Hence, our study revealed the roles of exogenous (TBI, HFD, and CCH) and endogenous (TrkB/BDNF) risk factors in the onset of AD-associated pathologies.
Collapse
Affiliation(s)
- Zhourui Wu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai 200072, China
| | - Chun Chen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China;
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai 200072, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322;
| |
Collapse
|
5
|
Khetani S, Singh A, Besler B, Butterworth S, Lijnse T, Loughery K, Smith K, Hosseini E, Narang R, Karan K, Debert C, Sen A, Murari K, Nezhad AS. μDrop: Multi-analyte portable electrochemical-sensing device for blood-based detection of cleaved tau and neuron filament light in traumatic brain injury patients. Biosens Bioelectron 2021; 178:113033. [PMID: 33517230 DOI: 10.1016/j.bios.2021.113033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Over 27 million individuals are affected every year worldwide with central nervous system (CNS) injuries. These injuries include but are not limited to traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries remain a significant public health concern which demands reliable tools for rapid, on-sight, on-field, and point-of-care diagnostic (POC) solutions. To address these challenges, we developed a low-cost, open-source, hand-held, portable, and POC detection technology, termed as MicroDrop (μDrop), which can simultaneously detect up to eight target biomolecules and display results in both analog and digital formats. The data acquired is stored wirelessly in a cloud server for further investigation and statistical analysis. Multiplexing capability of μDrop and immuno-biosensors detects and quantifies Cleaved-Tau Protein (C-Tau) and Neuron-Filament (NFL) proteins in the blood of TBI patients. Immuno-biosensors rapidly sense the two target proteins in less than 30 min, with μDrop and a conventional potentiostat. C-Tau and NFL were selectively detected with μDrop within the dynamic range of 10 pg/mL - 100 ng/mL and the sensitivity range of 47 μA/pg mm2 - 65 μA/pg mm2. Comparing the biosensing performance with enzyme-linked immunosorbent assays (ELISA) shows that the immuno-biosensors combined with μDrop could successfully differentiate between clinical controls and injured patients.
Collapse
Affiliation(s)
- Sultan Khetani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Anupriya Singh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Brendon Besler
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Savitri Butterworth
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Thomas Lijnse
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Kenneth Loughery
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Katrin Smith
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Ehsan Hosseini
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Rakesh Narang
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Chantel Debert
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, Foothills Medical Centre, University of Calgary, Calgary, Alberta, T2H 2T9, Canada
| | - Arindom Sen
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Kartikeya Murari
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Amir Sanati- Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
6
|
Schiefecker AJ, Putzer G, Braun P, Martini J, Strapazzon G, Antunes AP, Mulino M, Pinggera D, Glodny B, Brugger H, Paal P, Mair P, Pfausler B, Beer R, Humpel C, Helbok R. Total TauProtein as Investigated by Cerebral Microdialysis Increases in Hypothermic Cardiac Arrest: A Pig Study. Ther Hypothermia Temp Manag 2020; 11:28-34. [PMID: 32758071 DOI: 10.1089/ther.2020.0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The understanding and neurological prognostication of hypoxic ischemic encephalopathy (HIE) after hypothermic cardiac arrest (CA) is limited. Recent data suggest that the protein tau (total tau) might be a useful marker for outcome in patients with HIE. This translational porcine study aimed to analyze brain physiology in relation to total tau protein release during hypothermic CA. Eight domestic pigs were studied as part of a prospective porcine study using cerebral microdialysis (CMD). CMD samples for tau analysis were collected at baseline, after reaching the targeted core temperature of 28°C (hypothermia), after hypoxic hypercapnia (partial asphyxia), and finally 20 minutes after cardiopulmonary resuscitation. CMD-total tau-protein was analyzed using enzyme-linked immunosorbent essay. Cerebral tau protein was slightly elevated at baseline most likely due to an insertion trauma, remained stable during hypercapnic hypoxia, and significantly (p = 0.009) increased in 8/8 pigs during resuscitation to 1335 pg/mL (interquartile range: 705-2100). CMD-tau release was associated with lower levels of brain tissue oxygen tension (p = 0.011), higher CMD-lactate/pyruvate ratio, higher CMD-lactate, CMD-glutamate, and CMD-glycerol levels (p < 0.001, respectively), but not with cerebral perfusion pressure, intracranial pressure, or CMD-glucose levels. This study demonstrates an immediate tau protein release accompanied by deranged cerebral metabolism and decreased brain tissue oxygen tension during mechanical resuscitation in hypothermic CA. Understanding tau physiology and release kinetics is important for the design and interpretation of studies investigating tau as a biomarker of HIE.
Collapse
Affiliation(s)
- Alois Josef Schiefecker
- Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Putzer
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Braun
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Martini
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine at the European Academy, Bolzano, Italy
| | - Ana Patricia Antunes
- Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria.,Department of Neurosciences, Santa Maria Hospital, Hospital de Santa Maria, Lisbon, Portugal
| | - Miriam Mulino
- Department of Neurosurgery and Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Pinggera
- Department of Neurosurgery and Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Glodny
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine at the European Academy, Bolzano, Italy
| | - Peter Paal
- Department of Anaesthesiology and Intensive Care Medicine, Hospital of the Brothers of St. John of God Salzburg, Salzburg, Austria
| | - Peter Mair
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Pfausler
- Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronny Beer
- Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Humpel
- Laboratory for Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Hasslacher J, Rass V, Beer R, Ulmer H, Humpel C, Schiefecker A, Lehner G, Bellmann R, Joannidis M, Helbok R. Serum tau as a predictor for neurological outcome after cardiopulmonary resuscitation. Resuscitation 2020; 148:207-214. [DOI: 10.1016/j.resuscitation.2020.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
|
8
|
Wu Z, Wang ZH, Liu X, Zhang Z, Gu X, Yu SP, Keene CD, Cheng L, Ye K. Traumatic brain injury triggers APP and Tau cleavage by delta-secretase, mediating Alzheimer's disease pathology. Prog Neurobiol 2019; 185:101730. [PMID: 31778772 DOI: 10.1016/j.pneurobio.2019.101730] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Traumatic brain injury (TBI) is associated in some studies with clinical dementia, and neuropathological features, including amyloid plaque deposition and Tau neurofibrillary degeneration commonly identified in Alzheimer's disease (AD). However, the molecular mechanisms linking TBI to AD remain unclear. Here we show that TBI activates transcription factor CCAAT/Enhancer Binding Protein Beta (C/EBPβ), increasing delta-secretase (AEP) expression. Activated AEP cleaves both APP and Tau at APP N585 and Tau N368 sites, respectively, which mediate AD pathogenesis by promoting Aβ production and Tau hyperphosphorylation and inducing neuroinflammation and neurotoxicity. Knockout of AEP or C/EBPβ diminishes TBI-induced AD-like pathology and cognitive impairment in the 3xTg AD mouse model. Remarkably, viral expression of AEP-resistant Tau N368A in the hippocampus of 3xTg mice also ameliorates the pathological and cognitive consequences of TBI. Finally, clinical TBI activates C/EBPβ and escalates AEP expression, leading to APP N585 and Tau N368 proteolytic cleavage in TBI patient brains. Hence, our findings support a potential role for AEP in linking TBI exposure with AD pathogenesis.
Collapse
Affiliation(s)
- Zhourui Wu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, 200072, China
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhentao Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, 200072, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Li HJ, Sun ZL, Pan YB, Xu MH, Feng DF. Effect of α7nAChR on learning and memory dysfunction in a rat model of diffuse axonal injury. Exp Cell Res 2019; 383:111546. [PMID: 31398352 DOI: 10.1016/j.yexcr.2019.111546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/30/2022]
Abstract
Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and significantly contributes to cognitive deficits. The mechanisms that underlie these cognitive deficits are often associated with complex molecular alterations. α7nAChR, one of the abundant and widespread nicotinic acetylcholine receptors (nAChRs) in the brain, plays important physiological functions in the central nervous system. However, the relationship between temporospatial alterations in the α7nAChR and DAI-related learning and memory dysfunction are not completely understood. Our study detected temporospatial alterations of α7nAChR in vulnerable areas (hippocampus, internal capsule, corpus callosum and brain stem) of DAI rats and evaluated the development and progression of learning and memory dysfunction via the Morris water maze (MWM). We determined that α7nAChR expression in vulnerable areas was mainly reduced at the recovery of DAI in rats. Moreover, the escape latency of the injured group increased significantly and the percentages of the distance travelled and time spent in the target quadrant were significantly decreased after DAI. Furthermore, α7nAChR expression in the vulnerable area was significantly positively correlated with MWM performance after DAI according to regression analysis. In addition, we determined that a selective α7nAChR agonist significantly improved learning and memory dysfunction. Rats in the α7nAChR agonist group showed better learning and memory performance than those in the antagonist group. These results demonstrate that microstructural injury-induced alterations of α7nAChR in the vulnerable area are significantly correlated with learning and memory dysfunctions after DAI and that augmentation of the α7nAChR level by its agonist contributes to the improvement of learning and memory function.
Collapse
Affiliation(s)
- Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Mang-Hua Xu
- Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
10
|
Chen M, Song H, Cui J, Johnson CE, Hubler GK, DePalma RG, Gu Z, Xia W. Proteomic Profiling of Mouse Brains Exposed to Blast-Induced Mild Traumatic Brain Injury Reveals Changes in Axonal Proteins and Phosphorylated Tau. J Alzheimers Dis 2019; 66:751-773. [PMID: 30347620 DOI: 10.3233/jad-180726] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by two pathological hallmarks: Tau-containing neurofibrillary tangles and amyloid-β protein (Aβ)-containing neuritic plaques. The goal of this study is to understand mild traumatic brain injury (mTBI)-related brain proteomic changes and tau-related biochemical adaptations that may contribute to AD-like neurodegeneration. We found that both phosphorylated tau (p-tau) and the ratio of p-tau/tau were significantly increased in brains of mice collected at 3 and 24 h after exposure to 82-kPa low-intensity open-field blast. Neurological deficits were observed in animals at 24 h and 7 days after the blast using Simple Neuroassessment of Asymmetric imPairment (SNAP) test, and axon/dendrite degeneration was revealed at 7 days by silver staining. Liquid chromatography-mass spectrometry (LC-MS/MS) was used to analyze brain tissue labeled with isobaric mass tags for relative protein quantification. The results from the proteomics and bioinformatic analysis illustrated the alterations of axonal and synaptic proteins in related pathways, including but not being limited to substantia nigra development, cortical cytoskeleton organization, and synaptic vesicle exocytosis, suggesting a potential axonal damage caused by blast-induced mTBI. Among altered proteins found in brains suffering blast, microtubule-associated protein 1B, stathmin, neurofilaments, actin binding proteins, myelin basic protein, calcium/calmodulin-dependent protein kinase, and synaptotagmin I were representative ones involved in altered pathways elicited by mTBI. Therefore, TBI induces elevated phospho-tau, a pathological feature found in brains of AD, and altered a number of neurophysiological processes, supporting the notion that blast-induced mTBI as a risk factor contributes to AD pathogenesis. LC/MS-based profiling has presented candidate target/pathways that could be explored for future therapeutic development.
Collapse
Affiliation(s)
- Mei Chen
- Geriatric Research Education and Clinical Center, Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA.,Truman VA Hospital Research Service, Columbia, MO, USA
| | - Catherine E Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Graham K Hubler
- Sidney Kimmel Institute for Nuclear Renaissance, Department of Physics and Astronomy, University of Missouri, Columbia, MO USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA Department of Surgery, Uniformed University of the Health Science, Bethesda, MD, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA.,Truman VA Hospital Research Service, Columbia, MO, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Huang GH, Chen K, Sun YY, Zhu L, Sun ZL, Feng DF. 4-Phenylbutyrate Ameliorates Anxiety Disorder by Inhibiting Endoplasmic Reticulum Stress after Diffuse Axonal Injury. J Neurotrauma 2019; 36:1856-1868. [PMID: 30582423 DOI: 10.1089/neu.2018.6048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diffuse axonal injury (DAI) is accompanied frequently by adverse sequelae and psychiatric disorders, such as anxiety, leading to a decreased quality of life, social isolation, and poor outcomes in patients. The mechanisms regulating psychiatric disorders post-DAI are not well elucidated, however. Previous studies showed that endoplasmic reticulum (ER) stress functions as a pivotal factor in neurodegeneration disease. In this study, we showed that DAI can trigger ER stress and unfolded protein response (UPR) activation in both the acute and chronic periods, leading to cell death and anxiety disorder. Treatment with 4-phenylbutyrate (4-PBA) is able to inhibit the UPR and cell apoptosis and relieve the anxiety disorder in our DAI model. Later (14 days post-DAI) 4-PBA treatment, however, can restore only the related gene expression of ER stress and UPR but not the psychiatric disorder. Therefore, the early (5 min after DAI) administration of 4-PBA might be a therapeutic approach for blocking the ER stress/UPR-induced cell death and anxiety disorder after DAI.
Collapse
Affiliation(s)
- Guo-Hui Huang
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Chen
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Yu Sun
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao-Liang Sun
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Fu Feng
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Song T, Zhu Y, Zhang P, Zhao M, Zhao D, Ding S, Zhu S, Li J. Integrated Proteomics and Metabolomic Analyses of Plasma Injury Biomarkers in a Serious Brain Trauma Model in Rats. Int J Mol Sci 2019; 20:ijms20040922. [PMID: 30791599 PMCID: PMC6412711 DOI: 10.3390/ijms20040922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Diffuse axonal injury (DAI) is a prevalent and serious brain injury with significant morbidity and disability. However, the underlying pathogenesis of DAI remains largely unclear, and there are still no objective laboratory-based tests available for clinicians to make an early diagnosis of DAI. An integrated analysis of metabolomic data and proteomic data may be useful to identify all of the molecular mechanisms of DAI and novel potential biomarkers. Therefore, we established a rat model of DAI, and applied an integrated UPLC-Q-TOF/MS-based metabolomics and isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to obtain unbiased profiling data. Differential analysis identified 34 metabolites and 43 proteins in rat plasma of the injury group. Two metabolites (acetone and 4-Hydroxybenzaldehyde) and two proteins (Alpha-1-antiproteinase and Alpha-1-acid glycoprotein) were identified as potential biomarkers for DAI, and all may play important roles in the pathogenesis of DAI. Our study demonstrated the feasibility of integrated metabolomics and proteomics method to uncover the underlying molecular mechanisms of DAI, and may help provide clinicians with some novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tao Song
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China.
| | - Ying Zhu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China.
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing 401331, China.
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
13
|
Zhang P, Zhu S, Zhao M, Zhao P, Zhao H, Deng J, Li J. Identification of plasma biomarkers for diffuse axonal injury in rats by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Brain Res Bull 2018; 142:224-232. [PMID: 30077728 DOI: 10.1016/j.brainresbull.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
DAI is a serious and complex brain injury associated with significant morbidity and mortality. The lack of reliable objective diagnostic modalities for DAI delays administration of therapeutic interventions. Hence, identifying reliable biomarkers is urgently needed to enable early DAI diagnosis in the clinic. Herein, we established a rat model of DAI and applied an isobaric tags for a relative and absolute quantification (iTRAQ) coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) proteomics approach to screen differentially expressed plasma proteins associated with DAI. A total of 58 proteins were found to be significantly modulated in blood plasma samples of the injury group in at least one time point compared to controls. Bioinformatics analysis of the differentially expressed proteins revealed that the pathogenesis of axonal injury underlying DAI is multi-stage biological process involved. Two significantly changed proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hemopexin (Hpx), were identified as potential diagnostic biomarkers for DAI, and were successfully confirmed by further western blot analysis. This proteomic profiling study not only identified novel plasma biomarkers that may facilitate the development of clinically diagnostic for DAI, but also provided enhanced understanding of the molecular mechanisms underlying DAI.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Peng Zhao
- Faculty of Basic Medical Sciences, Zunyi Medical And Pharmaceutical College, Zunyi 563006, China
| | - Haiyi Zhao
- Genecreate Biological Engineering Co., Ltd., National Bio-Industry Base, Wuhan, 430075, China
| | - Jianqiang Deng
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
14
|
Grassi DC, Conceição DMD, Leite CDC, Andrade CS. Current contribution of diffusion tensor imaging in the evaluation of diffuse axonal injury. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:189-199. [DOI: 10.1590/0004-282x20180007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022]
Abstract
ABSTRACT Traumatic brain injury (TBI) is the number one cause of death and morbidity among young adults. Moreover, survivors are frequently left with functional disabilities during the most productive years of their lives. One main aspect of TBI pathology is diffuse axonal injury, which is increasingly recognized due to its presence in 40% to 50% of all cases that require hospital admission. Diffuse axonal injury is defined as widespread axonal damage and is characterized by complete axotomy and secondary reactions due to overall axonopathy. These changes can be seen in neuroimaging studies as hemorrhagic focal areas and diffuse edema. However, the diffuse axonal injury findings are frequently under-recognized in conventional neuroimaging studies. In such scenarios, diffuse tensor imaging (DTI) plays an important role because it provides further information on white matter integrity that is not obtained with standard magnetic resonance imaging sequences. Extensive reviews concerning the physics of DTI and its use in the context of TBI patients have been published, but these issues are still hazy for many allied-health professionals. Herein, we aim to review the current contribution of diverse state-of-the-art DTI analytical methods to the understanding of diffuse axonal injury pathophysiology and prognosis, to serve as a quick reference for those interested in planning new studies and who are involved in the care of TBI victims. For this purpose, a comprehensive search in Pubmed was performed using the following keywords: “traumatic brain injury”, “diffuse axonal injury”, and “diffusion tensor imaging”.
Collapse
|
15
|
Cerebrospinal fluid and brain extracellular fluid in severe brain trauma. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:237-258. [DOI: 10.1016/b978-0-12-804279-3.00014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18122600. [PMID: 29207487 PMCID: PMC5751203 DOI: 10.3390/ijms18122600] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the world’s leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca2+. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.
Collapse
|
17
|
Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury. Front Neurol 2017; 8:599. [PMID: 29209266 PMCID: PMC5702013 DOI: 10.3389/fneur.2017.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/25/2017] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI) is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key risk factor for neurodegeneration and dementias at long-term following TBI, the secondary injury processes may require prolonged monitoring. The aim of the present review is to summarize the clinical short- and long-term monitoring possibilities of axonal injury in TBI. Increased knowledge of the underlying pathophysiology achieved by advanced clinical monitoring raises hope for the development of novel treatment strategies for axonal injury in TBI.
Collapse
Affiliation(s)
- Parmenion P Tsitsopoulos
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Sami Abu Hamdeh
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Snyder VS, Hansen LA. A Conceptual Overview of Axonopathy in Infants and Children with Allegedly Inflicted Head Trauma. Acad Forensic Pathol 2016; 6:608-621. [PMID: 31239934 PMCID: PMC6474503 DOI: 10.23907/2016.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/14/2016] [Accepted: 11/12/2016] [Indexed: 11/12/2022]
Abstract
Fatal, allegedly inflicted pediatric head trauma remains a controversial topic in forensic pathology. Recommendations for systematic neuropathologic evaluation of the brains of supposedly injured infants and children usually include the assessment of long white matter tracts in search of axonopathy - specifically, diffuse axonal injury. The ability to recognize, document, and interpret injuries to axons has significant academic and medicolegal implications. For example, more than two decades of inconsistent nosology have resulted in confusion about the definition of diffuse axonal injury between various medical disciplines including radiology, neurosurgery, pediatrics, neuropathology, and forensic pathology. Furthermore, in the pediatric setting, acceptance that "pure" shaking can cause axonal shearing in infants and young children is not widespread. Additionally, controversy abounds whether or not axonal trauma can be identified within regions of white matter ischemia - a debate with very significant implications. Immunohistochemistry is often used not only to document axonal injury, but also to estimate the time since injury. As a result, the estimated post-injury interval may then be used by law enforcement officers and prosecutors to narrow "exclusive opportunity" and thus, identify potential suspects. Fundamental to these highly complicated and controversial topics is a philosophical understanding of the diffuse axonal injury spectrum disorders.
Collapse
|
19
|
Identifying Diffuse Axonal Injury by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight. ACTA ACUST UNITED AC 2016; 37:279-283. [DOI: 10.1097/paf.0000000000000275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Zhao YL, Song JN, Ma XD, Zhang BF, Li DD, Pang HG. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res 2016; 11:944-50. [PMID: 27482223 PMCID: PMC4962592 DOI: 10.4103/1673-5374.184493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury.
Collapse
Affiliation(s)
- Yong-Lin Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Ning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xu-Dong Ma
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bin-Fei Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Dan-Dong Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong-Gang Pang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
21
|
Hu H, Zhou Y, Wang Q, Su S, Qiu Y, Ge J, Wang Z, Xiao Z. Association of abnormal white matter integrity in the acute phase of motor vehicle accidents with post-traumatic stress disorder. J Affect Disord 2016; 190:714-722. [PMID: 26600413 DOI: 10.1016/j.jad.2015.09.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND A small portion of the Motor vehicle accidents (MVA) survivors would develop post-traumatic stress disorder (PTSD), which would cause substantial social function loss. How to identify those high-risk MVA survivors in the acute phase of the trauma is the first step to prevent the onset of PTSD. In the present study, we studied white matter integrity of subjects post to MVA by diffusional tensor imaging (DTI). METHODS To investigate whether the integrity of the white matter was impaired in the acute phase of the MVA among survivors who later develop PTSD and whether it could predict the severity of PTSD while being diagnosed. MVA Survivors were recruited to get trauma-specific clinical assessments and received DTI scan within 2 days from the MVA. These survivors were divided into 2 groups, PTSD group and trauma control (TC) group based on the clinical follow-up interview. Tract-Based Spatial Statistics (TBSS) was carried out to investigate difference in white matter integrity between 2 groups within DTI parameter maps. White matter integrity was measured by using fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radical diffusivity (RD). RESULTS Compared with TC group, PTSD group showed lower FA value in multiple regions of both hemispheres, mainly involving anterior thalamic radiation, cortico-spinal tract, forceps minor, uncinate, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, cingulum and superior longitudinal fasciculus. Increased RD was also detected in PTSD group in the posterior part of right hemisphere, involving forceps major, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, cingulum, hippocampus and superior longitudinal fasciculus. The baseline FA and RD values correlated with Clinician-Administered PTSD Scale scores at clinical follow up. CONCLUSION MVA survivors who later developed PTSD had more abnormalities in white matter integrity in the acute phase than those non-PTSD MVA survivors. Imaging markers of white matter integrity might be helpful in early identification of MVA survivors at high risk of PTSD. LIMITATIONS Larger sample size in our extensive study is needed to confer a robust inference and image data at follow up are needed to observe the longitudinal changes of white matter integrity.
Collapse
Affiliation(s)
- Hao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qian Wang
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shanshan Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Yongming Qiu
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jianwei Ge
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China.
| | - Zeping Xiao
- Shanghai Jiao Tong University School of Medicine, PR China.
| |
Collapse
|
22
|
Zhang P, Zhu S, Li Y, Zhao M, Liu M, Gao J, Ding S, Li J. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS. J Proteomics 2015; 133:93-99. [PMID: 26710722 DOI: 10.1016/j.jprot.2015.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/17/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Abstract
Diffuse axonal injury (DAI) is fairly common during a traumatic brain injury (TBI) and is associated with high mortality. Making an early diagnosis, appropriate therapeutic decisions, and an accurate prognostic evaluation of patients with DAI still pose difficulties for clinicians. The detailed mechanisms of axonal injury after head trauma have yet to be clearly defined and no reliable biomarkers are available for early DAI diagnosis. Therefore, this study employed an established DAI animal model in conjunction with an isobaric tag for relative and absolute quantification (iTRAQ)-based protein identification/quantification approach. Alterations in rat cerebral protein expression were quantified using iTRAQ coupled LC-MS/MS, with differentially expressed proteins between the control groups, sham and sham-injured, and the injury groups, animals that died immediately post-injury and those sacrificed at 1h, 6h, 1d, 3d and 7d post-injury, identified. A total of 1858 proteins were identified and quantified and comparative analysis identified ten candidate proteins that warranted further examination. Of the ten candidate DAI biomarkers, four proteins, citrate synthase (CS), synaptosomal-associated protein 25 (Snap25), microtubule-associated protein 1B (MAP1B) and Rho-associated protein kinase 2 (Rock2), were validated by subsequent Western blot and immunohistochemistry analyses. Our studies not only identified several novel biomarkers that may provide insight into the pathophysiological mechanisms of DAI, but also demonstrated the feasibility of iTRAQ-based quantitative proteomic analysis in cerebral tissue research.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yongguo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Meng Liu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Jun Gao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Shijia Ding
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
23
|
Toman E, Harrisson S, Belli T. Biomarkers in traumatic brain injury: a review. J ROY ARMY MED CORPS 2015; 162:103-8. [PMID: 26527607 DOI: 10.1136/jramc-2015-000517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/11/2015] [Indexed: 12/23/2022]
Abstract
Biomarkers allow physiological processes to be monitored, in both health and injury. Multiple attempts have been made to use biomarkers in traumatic brain injury (TBI). Identification of such biomarkers could allow improved understanding of the pathological processes involved in TBI, diagnosis, prognostication and development of novel therapies. This review article aims to cover both established and emerging TBI biomarkers along with their benefits and limitations. It then discusses the potential value of TBI biomarkers to military, civilian and sporting populations and the future hopes for developing a role for biomarkers in head injury management.
Collapse
Affiliation(s)
- Emma Toman
- Major Trauma Service, Queen Elizabeth Hospital, Birmingham, UK
| | - S Harrisson
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - T Belli
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Yuan L, Wei X, Xu C, Jin Y, Wang G, Li Y, Tian H, Chen S. Use of multisequence 3.0-T MRI to detect severe traumatic brain injury and predict the outcome. Br J Radiol 2015; 88:20150129. [PMID: 26067919 DOI: 10.1259/bjr.20150129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate multisequence 3.0-T MRI in the detection of severe traumatic brain injury (sTBI) and in predicting the outcome. METHODS 32 patients with sTBI were prospectively enrolled, and multisequence 3.0-T MRI was performed 4-8 weeks post injury. Quantitative data were recorded on each sequence. The ability to display the parenchymal lesions was compared with that of 64-slice spiral CT. The clinical and radiological results were correlated with the Glasgow Outcome Scale Extended scores 6 months after injury. RESULTS 3.0-T MRI could display more lesions than CT, especially when the lesion was deeply located. The lesion volumes and diffuse axonal injury (DAI) scores were different between good and poor outcome groups on fluid attenuated inversion recovery (p < 0.05). The apparent diffusion coefficient (ADC) values of the splenium of the corpus callosum and brain stem were also different (p < 0.05). Patients with unfavourable outcome showed a significantly higher volume of haemorrhage on susceptibility-weighted imaging than those with favourable outcomes and had haemorrhages generally located more deeply. Logistic regression analysis revealed that the location of haemorrhage and the ADC values of the splenium of the corpus callosum were independent risk factors for poor outcome, with an overall predictive accuracy of 91.4%. CONCLUSION The joint use of conventional and advanced sequences of 3.0-T MRI can comprehensively detect the pathological changes occurring after sTBI. Haemorrhagic and non-haemorrhagic DAIs in deep structures strongly suggest poor outcome. ADVANCES IN KNOWLEDGE This article improves the understanding of advanced MRI sequences in the detection of patients with sTBI and prediction of prognosis.
Collapse
Affiliation(s)
- L Yuan
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - X Wei
- 2 Department of Diagnostic Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - C Xu
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Y Jin
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - G Wang
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Y Li
- 2 Department of Diagnostic Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - H Tian
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - S Chen
- 1 Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
25
|
Expression of amyloid-β protein and amyloid-β precursor protein after primary brain-stem injury in rats. Am J Forensic Med Pathol 2015; 35:201-5. [PMID: 24949598 DOI: 10.1097/paf.0000000000000103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amyloid-β (Aβ) protein and its precursor, amyloid-β precursor protein (β-APP), have traditionally been used in the diagnosis of Alzheimer disease. Their use in diagnosis of traumatic brain injury by forensic analysis is becoming more widespread. However, to date, no reliable small animal model exists to evaluate these brain injury indicators. To address this, we have studied primary brain-stem injury in rats to assess the appearance of diffuse axonal injury in brain sections and correlate these findings with appearance of Aβ and relative β-APP mRNA levels. Using an EnVision 2-step immunohistochemical staining method to measure axon diameter, we found that there was significant difference in axon diameters within the medulla oblongata and several time points after brain injury, ranging from 3 to 24 hours. In addition, mRNA expression levels of β-APP increased following brain injury, peaking 3 hours following injury and decreasing back to baseline levels by 24 hours after injury. These results suggest that using immunohistochemistry and reverse transcription-polymerase chain reaction to detect changes in Aβ-associated axonal changes and β-APP mRNA levels, respectively, can be useful for the diagnosis of diffuse axonal injury during autopsy at early time points following fatal brain injury.
Collapse
|
26
|
Lavrnja I, Savic D, Parabucki A, Dacic S, Laketa D, Pekovic S, Stojiljkovic M. Effect of stab injury in the rat cerebral cortex on temporal pattern of expression of neuronal cytoskeletal proteins: an immunohistochemical study. Acta Histochem 2015; 117:155-62. [PMID: 25592752 DOI: 10.1016/j.acthis.2014.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022]
Abstract
Compelling evidence now points to the critical role of the cytoskeleton in neurodegeneration. In the present study, using an immunohistochemical approach, we have shown that cortical stab injury (CSI) in adult Wistar rats significantly affects temporal pattern of expression of neurofilament proteins (NFs), a major cytoskeleton components of neurons, and microtubule-associated proteins (MAP2). At 3 days post-injury (dpi) most of the NFs immunoreactivity was found in pyknotic neurons and in fragmentized axonal processes in the perilesioned cortex. These cytoskeletal alterations became more pronounced by 10dpi. At the subcellular level CSI also showed significant impact on NFs and MAP-2 expression. Thus, at 3dpi most of the dendrites disappeared, while large neuronal somata appeared like open circles pointing to membrane disintegration. Conversely, at 10dpi neuronal perikarya and a few new apical dendrites were strongly labeled. Since aberrant NF phosphorylation is a pathological hallmark of many human neurodegenerative disorders, as well as is found after stressor stimuli, the present results shed light into the expression of neurofilaments after the stab brain injury.
Collapse
Affiliation(s)
- Irena Lavrnja
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" University of Belgrade, Belgrade, Serbia.
| | - Danijela Savic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" University of Belgrade, Belgrade, Serbia
| | - Ana Parabucki
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" University of Belgrade, Belgrade, Serbia
| | - Sanja Dacic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sanja Pekovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" University of Belgrade, Belgrade, Serbia
| | - Mirjana Stojiljkovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Helbok R, Schiefecker A, Delazer M, Beer R, Bodner T, Pfausler B, Benke T, Lackner P, Fischer M, Sohm F, Hackl W, Stover JF, Thomé C, Humpel C, Schmutzhard E. Cerebral tau is elevated after aneurysmal subarachnoid haemorrhage and associated with brain metabolic distress and poor functional and cognitive long-term outcome. J Neurol Neurosurg Psychiatry 2015; 86:79-86. [PMID: 24741064 DOI: 10.1136/jnnp-2013-307326] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Recent evidence suggests axonal injury after aneurysmal subarachnoid haemorrhage (aSAH). The microtubule-associated protein, tau, has been shown to be elevated in the cerebrospinal fluid after aSAH, however, brain extracellular tau levels and their relation to long-term neurological and cognitive outcomes have not been investigated. METHODS Serial cerebral microdialysis (CMD) samples were collected from 22 consecutive aSAH patients with multimodal neuromonitoring to determine CMD-total-tau by ELISA. CMD-total-tau was analysed considering other brain metabolic parameters, brain tissue oxygen tension (PbtO2), and functional and neuropsychological outcome at 12 months. All outcome models were analysed using generalised estimating equations with an autoregressive working correlation matrix to account for multiple measurements of brain extracellular proteins per subject. RESULTS CMD-total-tau levels positively correlated with brain extracellular fluid levels of lactate (r=0.40, p<0.001), glutamate (r=0.45, p<0.001), pyruvate (r=0.26, p<0.001), and the lactate-pyruvate ratio (r=0.26, p<0.001), and were higher in episodes of hypoxic (PbtO2<20 mm Hg) brain extracellular lactate elevation (>4 mmol/L) (p<0.01). More importantly, high CMD-total-tau levels were associated with poor functional outcome (modified Rankin Scale ≥4) 12 months after aSAH even after adjusting for disease severity and age (p=0.001). A similar association was found with 3/5 neuropsychological tests indicative of impairments in cognition, psychomotor speed, visual conceptualisation and frontal executive functions at 1 year after aSAH (p<0.01). CONCLUSIONS These results suggest that CMD-total tau may be an important biomarker for predicting long-term outcome in patients with severe aSAH. The value of axonal injury needs further confirmation in a larger patient cohort, preferably combined with advanced imaging techniques.
Collapse
Affiliation(s)
- Raimund Helbok
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Alois Schiefecker
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Margarete Delazer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Ronny Beer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Thomas Bodner
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Bettina Pfausler
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Thomas Benke
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Lackner
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Marlene Fischer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Sohm
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Hackl
- UMIT-University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | | | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| | - Christian Humpel
- Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Innsbruck, Austria
| | - Erich Schmutzhard
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
28
|
Siedler DG, Chuah MI, Kirkcaldie MTK, Vickers JC, King AE. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front Cell Neurosci 2014; 8:429. [PMID: 25565963 PMCID: PMC4269130 DOI: 10.3389/fncel.2014.00429] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/29/2014] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) from penetrating or closed forces to the cranium can result in a range of forms of neural damage, which culminate in mortality or impart mild to significant neurological disability. In this regard, diffuse axonal injury (DAI) is a major neuronal pathophenotype of TBI and is associated with a complex set of cytoskeletal changes. The neurofilament triplet proteins are key structural cytoskeletal elements, which may also be important contributors to the tensile strength of axons. This has significant implications with respect to how axons may respond to TBI. It is not known, however, whether neurofilament compaction and the cytoskeletal changes that evolve following axonal injury represent a component of a protective mechanism following damage, or whether they serve to augment degeneration and progression to secondary axotomy. Here we review the structure and role of neurofilament proteins in normal neuronal function. We also discuss the processes that characterize DAI and the resultant alterations in neurofilaments, highlighting potential clues to a possible protective or degenerative influence of specific neurofilament alterations within injured neurons. The potential utility of neurofilament assays as biomarkers for axonal injury is also discussed. Insights into the complex alterations in neurofilaments will contribute to future efforts in developing therapeutic strategies to prevent, ameliorate or reverse neuronal degeneration in the central nervous system (CNS) following traumatic injury.
Collapse
Affiliation(s)
- Declan G Siedler
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Meng Inn Chuah
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| |
Collapse
|
29
|
Stokum JA, Sours C, Zhuo J, Kane R, Shanmuganathan K, Gullapalli RP. A longitudinal evaluation of diffusion kurtosis imaging in patients with mild traumatic brain injury. Brain Inj 2014; 29:47-57. [PMID: 25259786 DOI: 10.3109/02699052.2014.947628] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PRIMARY OBJECTIVE To investigate longitudinal diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) changes in white and grey matter in patients with mild traumatic brain injury (mTBI). RESEARCH DESIGN A prospective case-control study. METHODS AND PROCEDURES DKI data was obtained from 24 patients with mTBI along with cognitive assessments within 10 days, 1 month and 6 months post-injury and compared with age-matched control (n¼ 24). Fractional anisotropy (FA), mean diffusivity (MD), radial diffusion (l(r)), mean kurtosis (MK) and radial kurtosis (Kr) were extracted from the thalamus, internal capsule and corpus callosum. MAIN OUTCOMES AND RESULTS Results demonstrate reduced Kr and MK in the anterior internal capsule in patients with mTBI across the three visits, and reduced MK in the posterior internal capsule during the 10 day time point. Correlations were observed between the change in MK or Kr between 1–6 months and the improvements in cognition between the 1 and 6 month visits in the thalamus, internal capsule and corpus callosum. CONCLUSIONS These data demonstrate that DKI may be sensitive in tracking pathophysiological changes associated with mTBI and may provide additional information to conventional DTI parameters in evaluating longitudinal changes following TBI.
Collapse
|
30
|
Kalm M, Abel E, Wasling P, Nyman J, Hietala MA, Bremell D, Hagberg L, Elam M, Blennow K, Björk-Eriksson T, Zetterberg H. Neurochemical evidence of potential neurotoxicity after prophylactic cranial irradiation. Int J Radiat Oncol Biol Phys 2014; 89:607-14. [PMID: 24803034 DOI: 10.1016/j.ijrobp.2014.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/21/2014] [Accepted: 03/12/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE To examine whether cerebrospinal fluid biomarkers for neuroaxonal damage, neuroglial activation, and amyloid β-related processes could characterize the neurochemical response to cranial radiation. METHODS AND MATERIALS Before prophylactic cranial irradiation (PCI) of patients with small cell lung cancer, each patient underwent magnetic resonance imaging of the brain, lumbar puncture, and Mini-Mental State Examination of cognitive function. These examinations were repeated at approximately 3 and 12 months after radiation. RESULTS The major findings were as follows. (1) Cerebrospinal fluid markers for neuronal and neuroglial injury were elevated during the subacute phase after PCI. Neurofilament and T-tau increased 120% and 50%, respectively, after PCI (P<.05). The same was seen for the neuroglial markers YKL-40 and glial fibrillary acidic protein, which increased 144% and 106%, respectively, after PCI (P<.05). (2) The levels of secreted amyloid precursor protein-α and -β were reduced 44% and 46%, respectively, 3 months after PCI, and the levels continued to decrease as long as 1 year after treatment (P<.05). (3) Mini-Mental State Examination did not reveal any cognitive decline, indicating that a more sensitive test should be used in future studies. CONCLUSION In conclusion, we were able to detect radiation therapy-induced changes in several markers reflecting neuronal injury, inflammatory/astroglial activation, and altered amyloid precursor protein/amyloid β metabolism, despite the low number of patients and quite moderate radiation doses (20-30 Gy). These changes are hypothesis generating and could potentially be used to assess the individual risk of developing long-term symptoms of chronic encephalopathy after PCI. This has to be evaluated in large studies with extended clinical follow-up and more detailed neurocognitive assessments.
Collapse
Affiliation(s)
- Marie Kalm
- Department of Clinical Neuroscience and Rehabilitation, Insitute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Edvard Abel
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pontus Wasling
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jan Nyman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Max Albert Hietala
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Bremell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mikael Elam
- Department of Clinical Neuroscience and Rehabilitation, Insitute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Thomas Björk-Eriksson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
31
|
Valiyaveettil M, Alamneh YA, Wang Y, Arun P, Oguntayo S, Wei Y, Long JB, Nambiar MP. Cytoskeletal protein α-II spectrin degradation in the brain of repeated blast exposed mice. Brain Res 2014; 1549:32-41. [PMID: 24412202 DOI: 10.1016/j.brainres.2013.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
Repeated blast exposures commonly induce traumatic brain injury (TBI) characterized by diffuse axonal injury (DAI). We hypothesized that degradation of cytoskeletal proteins in the brain can lead to DAI, and evaluated α-II spectrin degradation in the pathophysiology of blast-induced TBI using the tightly-coupled three repetitive blast exposure mice model with a 1-30 min window in between exposures. Degradation of α-II spectrin and the expression profiles of caspase-3 and calpain-2, the major enzymes involved in the degradation were analyzed in the frontal cortex and cerebellum using Western blotting with specific antibodies. DAI at different brain regions was evaluated by neuropathology with silver staining. Repeated blast exposures resulted in significant increases in the α-II spectrin degradation products in the frontal cortex and cerebellum compared to sham controls. Expression of active caspase-3, which degrades α-II spectrin, showed significant increase in the frontal cortex after blast exposure at all the time points studied, while cerebellum showed an acute increase which was normalized over time. The expression of another α-II spectrin degrading enzyme, calpain-2, showed a rapid increase in the frontal cortex after blast exposure and it was significantly higher in the cerebellum at later time points. Neuropathological analysis showed significant levels of DAI at the frontal cortex and cerebellum at multiple time points after repeated blast injury. In summary, repeated blast exposure results in specific degradation of α-II spectrin in the brain along with differential expression of caspase-3/calpain-2 suggesting cytoskeletal breakdown as a possible contributor of DAI after repeated blast exposure.
Collapse
Affiliation(s)
- Manoj Valiyaveettil
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Yonas A Alamneh
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Samuel Oguntayo
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Yanling Wei
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Madhusoodana P Nambiar
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
32
|
Marklund N, Farrokhnia N, Hånell A, Vanmechelen E, Enblad P, Zetterberg H, Blennow K, Hillered L. Monitoring of β-Amyloid Dynamics after Human Traumatic Brain Injury. J Neurotrauma 2014; 31:42-55. [DOI: 10.1089/neu.2013.2964] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Niklas Marklund
- Division of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Nina Farrokhnia
- Division of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anders Hånell
- Division of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Per Enblad
- Division of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- University College London, Institute of Neurology, Queen Square, London, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Lars Hillered
- Division of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Witek MA, Fung LWM. Quantitative studies of caspase-3 catalyzed αII-spectrin breakdown. Brain Res 2013; 1533:1-15. [PMID: 23948103 PMCID: PMC3786445 DOI: 10.1016/j.brainres.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 11/29/2022]
Abstract
Under various physiological and patho-physiological conditions, spectrin breakdown reactions generate several spectrin breakdown products (SBDPs)-in particular SBDPs of 150 kDa (SBDP150) and 120 kDa (SBDP120). Recently, numerous studies have shown that reactions leading to SBDPs are physiologically relevant, well regulated, and complex. Yet molecular studies on the mechanism of the SBDP formation are comparatively scarce. We have designed basic systems to allow us to follow the breakdown of αII-spectrin model proteins by caspase-3 in detail with gel electrophoresis, fluorescence and mass spectrometry methods. Amongst the predicted and reported sites, our results show that caspase-3 cleaves after residues D1185 and D1478, but not after residues D888, D1340 and D1475. We also found that the cleavage at these two sites is independent of each other. It may be possible to inhibit one site without affecting the other site. Cleavage after residue D1185 in intact αII-spectrin leads to SBDP150, and cleavage after D1478 site leads to SBDP120. Our results also show that the cleavage after the D1185 residue is unusually efficient, with a kcat/KM value of 40,000 M(-1) s(-1), and the cleavage after the D1478 site is more similar to most of the other reported caspase-3 substrates, with a kcat/KM value of 3000 M(-1) s(-1). We believe that this study lays out a methodology and foundation to study caspase-3 catalyzed spectrin breakdown to provide quantitative information. Molecular understanding may lead to better understanding of brain injuries and more precise and specific biomarker development.
Collapse
Affiliation(s)
- Marta A. Witek
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| | - L. W.-M. Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| |
Collapse
|
34
|
Diffuse traumatic axonal injury in the optic nerve does not elicit retinal ganglion cell loss. J Neuropathol Exp Neurol 2013; 72:768-81. [PMID: 23860030 DOI: 10.1097/nen.0b013e31829d8d9d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Much of the morbidity after traumatic brain injury (TBI) is associated with traumatic axonal injury (TAI). Although most TAI studies focus on corpus callosum white matter, the visual system has received increased interest. To assess visual system TAI, we developed a mouse model of optic nerve TAI. It is unknown, however, whether this TAI causes retinal ganglion cell (RGC) death. To address this issue, YFP (yellow fluorescent protein)-16 transgenic mice were subjected to mild TBI and followed from 2 to 28 days. Neither TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive or cleaved caspase-3-immunoreactive RGCs were observed from 2 to 28 days after TBI. Quantification of immunoreactivity of Brn3a, an RGC marker, demonstrated no RGC loss; parallel electron microscopic analysis confirmed RGC viability. Persistent RGC survival was also consistent with the finding of reorganization in the proximal axonal segments after TAI, wherein microglia/macrophages remained inactive. In contrast, activated microglia/macrophages closely enveloped the distal disconnected, degenerating axonal segments at 7 to 28 days after injury, thereby confirming that this model consistently evoked TAI followed by disconnection. Collectively, these data provide novel insight into the evolving pathobiology associated with TAI that will form a foundation for future studies exploring TAI therapy and its downstream consequences.
Collapse
|
35
|
Wuthisuthimethawee P, Saeheng S, Oearsakul T. Serum cleaved tau protein and traumatic mild head injury: a preliminary study in the Thai population. Eur J Trauma Emerg Surg 2013; 39:293-6. [PMID: 26815235 DOI: 10.1007/s00068-013-0263-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine the correlation between serum cleaved tau protein and traumatic mild head injury (MHI) (GCS 13-15). METHODS A prospective observational study was conducted. Blood specimens from 12 healthy persons and 44 adult patients with traumatic MHI were collected in the emergency department to measure the cleaved tau protein level using a Human Tau phosphoSerine 396 ELISA kit. A brain computed tomography (CT) scan was done in all patients. The serum cleaved tau protein level was considered positive at a cut-off point of 0.1 pg/ml. An intracranial lesion was defined as any abnormality detected by brain CT scan. RESULTS The mean age of the traumatic MHI patients was 34.9 ± 15.6 years (range 15-74). The median GCS was 15. The median time from injury to arrival at the emergency department was 30 min. There were 11 intracranial lesions detected by brain CT scan (25.0 %). Serum cleaved tau protein was not detected in either healthy or traumatic MHI patients. CONCLUSION As it was uncorrelated with traumatic MHI, serum cleaved tau protein proved to be an unreliable biomarker to use in the early detection of and decision-making for traumatic MHI patients at the emergency department.
Collapse
Affiliation(s)
- P Wuthisuthimethawee
- Department of Emergency Medicine, Faculty of Medicine, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - S Saeheng
- Department of Surgery, Faculty of Medicine, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - T Oearsakul
- Department of Surgery, Faculty of Medicine, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
36
|
O’Bryant SE, Xiao G, Barber R, Cullum CM, Weiner M, Hall J, Edwards M, Grammas P, Wilhelmsen K, Doody R, Diaz-Arrastia R. Molecular neuropsychology: creation of test-specific blood biomarker algorithms. Dement Geriatr Cogn Disord 2013; 37:45-57. [PMID: 24107792 PMCID: PMC4400831 DOI: 10.1159/000345605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Prior work on the link between blood-based biomarkers and cognitive status has largely been based on dichotomous classifications rather than detailed neuropsychological functioning. The current project was designed to create serum-based biomarker algorithms that predict neuropsychological test performance. METHODS A battery of neuropsychological measures was administered. Random forest analyses were utilized to create neuropsychological test-specific biomarker risk scores in a training set that were entered into linear regression models predicting the respective test scores in the test set. Serum multiplex biomarker data were analyzed on 108 proteins from 395 participants (197 Alzheimer patients and 198 controls) from the Texas Alzheimer's Research and Care Consortium. RESULTS The biomarker risk scores were significant predictors (p < 0.05) of scores on all neuropsychological tests. With the exception of premorbid intellectual status (6.6%), the biomarker risk scores alone accounted for a minimum of 12.9% of the variance in neuropsychological scores. Biomarker algorithms (biomarker risk scores and demographics) accounted for substantially more variance in scores. Review of the variable importance plots indicated differential patterns of biomarker significance for each test, suggesting the possibility of domain-specific biomarker algorithms. CONCLUSIONS Our findings provide proof of concept for a novel area of scientific discovery, which we term 'molecular neuropsychology'.
Collapse
Affiliation(s)
- Sid E. O’Bryant
- University of North Texas Health Sciences Center, Department of Internal Medicine & Institute for Aging & Alzheimer’s Disease Research, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - Guanghua Xiao
- University of Texas Southwestern Medical Center, Department of Clinical Sciences, 5323 Harry Hines Blvd, Dallas, Texas, 75235, USA
| | - Robert Barber
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience & Institute for Aging & Alzheimer’s Disease Research,, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - C. Munro Cullum
- University of Texas Southwestern Medical Center, Department of Psychiatry, 5323 Harry Hines Blvd, Dallas, Texas, 75235, USA
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, Texas, 75235, USA
| | - Myron Weiner
- University of Texas Southwestern Medical Center, Department of Psychiatry, 5323 Harry Hines Blvd, Dallas, Texas, 75235, USA
- University of Texas Southwestern Medical Center, Department of Neurology and Neurotherapeutics, 5323 Harry Hines Blvd, Dallas, Texas, 75235, USA
| | - James Hall
- University of North Texas Health Science Center, Department of Psychiatry & Institute for Aging & Alzheimer’s Disease Research, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - Melissa Edwards
- University of North Texas, Department of Psychology, 1155 Union Circle, Denton, Texas, 76203, USA
| | - Paula Grammas
- Texas Tech University Health Sciences Center, Garrison Institute on Aging, 3601 4th Street, Lubbock, Texas, 79415, USA
| | - Kirk Wilhelmsen
- University of North Carolina School of Medicine, Department of Genetics, 333 South Columbia Street, Chapel Hill, NC, 27514, USA
| | - Rachelle Doody
- Baylor College of Medicine, Department of Neurology, Alzheimer’s Disease and Memory Disorders Center, 1977 Butler Blvd. Suite E5.101, Houston, Texas, 77030, USA
| | - Ramon Diaz-Arrastia
- Uniformed Services University of the Health Sciences, Center for Neuroscience and Regenerative Medicine, 12725 Twinbrook Parkway, Rockville, MD, 20852, USA
| |
Collapse
|
37
|
Lin Y, Wen L. Inflammatory response following diffuse axonal injury. Int J Med Sci 2013; 10:515-21. [PMID: 23532682 PMCID: PMC3607236 DOI: 10.7150/ijms.5423] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/06/2013] [Indexed: 12/12/2022] Open
Abstract
DAI is a leading cause of the patient's death or lasting vegetable state following severe TBI, and up to now the detailed mechanism of axonal injury after head trauma is still unclear. Inflammatory responses have been proved to be an important mechanism of neural injury after TBI. However, most of these studies are concerned with focal cerebral injury following head trauma. In contrast to focal injury, studies on the inflammatory reaction following DAI are only beginning. And in this article, we aimed to review such studies. From the studies reviewed, immune response cells would become reactive around the sites of axonal injury after DAI. Besides, the concentrations of several important inflammatory factors, such as IL-1 family, IL-6 and TNF-ɑ, increased after DAI as well, which implies the participation of inflammatory responses. It can be concluded that inflammatory responses probably participate in the neural injury in DAI, but at present the study of inflammatory responses following DAI is still limited and the clear effects of inflammatory response on axonal injury remain to be more explored.
Collapse
Affiliation(s)
- Yu Lin
- School of Medicine, Zhejiang University City College, China
| | | |
Collapse
|
38
|
Yokobori S, Gajavelli S, Mondello S, Mo-Seaney J, Bramlett HM, Dietrich WD, Bullock MR. Neuroprotective effect of preoperatively induced mild hypothermia as determined by biomarkers and histopathological estimation in a rat subdural hematoma decompression model. J Neurosurg 2012; 118:370-80. [PMID: 23140154 DOI: 10.3171/2012.10.jns12725] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECT In patients who have sustained a traumatic brain injury (TBI), hypothermia therapy has not shown efficacy in multicenter clinical trials. Armed with the post hoc data from the latest clinical trial (National Acute Brain Injury Study: Hypothermia II), the authors hypothesized that hypothermia may be beneficial in an acute subdural hematoma (SDH) rat model by blunting the effects of ischemia/reperfusion injury. The major aim of this study was to test the efficacy of temperature management in reducing brain damage after acute SDH. METHODS The rats were induced with acute SDH and placed into 1 of 4 groups: 1) normothermia group (37°C); 2) early hypothermia group, head and body temperature reduced to 33°C 30 minutes prior to craniotomy; 3) late hypothermia group, temperature lowered to 33°C 30 minutes after decompression; and 4) sham group, no acute SDH (only craniotomy with normothermia). To assess for neuronal and glial cell damage, the authors analyzed microdialysate concentrations of GFAP and ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) by using a 100-kD probe. Fluoro-Jade B-positive neurons and injury volume with 2,3,5-triphenyltetrazolium chloride staining were also measured. RESULTS In the early phase of reperfusion (30 minutes, 2.5 hours after decompression), extracellular UCH-L1 in the early hypothermia group was significantly lower than in the normothermia group (early, 4.9 ± 1.0 ng/dl; late, 35.2 ± 12.1 ng/dl; normothermia, 50.20 ± 28.3 ng/dl; sham, 3.1 ± 1.3 ng/dl; early vs normothermia, p < 0.01; sham vs normothermia, p < 0.01, analyzed using ANOVA followed by a post hoc Bonferroni test). In the late phase of reperfusion (> 2.5 hours after decompression), extracellular GFAP in the early hypothermia group was also lower than in the normothermia and late hypothermia groups (early, 5.5 ± 2.9 ng/dl; late, 7.4 ± 3.4 ng/dl; normothermia, 15.3 ± 8.4 ng/dl; sham, 3.3 ± 1.0 ng/dl; normothermia vs sham; p < 0.01). The number of Fluoro-Jade B-positive cells in the early hypothermia group was significantly smaller than that in the normothermia group (normothermia vs early: 774,588 ± 162,173 vs 180,903 ± 42,212, p < 0.05). Also, the injury area and volume were smaller in the early hypothermia group in which hypothermia was induced before craniotomy and cerebral reperfusion (early, 115.2 ± 15.4 mm(3); late, 344.7 ± 29.1 mm(3); normothermia, 311.2 ± 79.2 mm(3); p < 0.05). CONCLUSIONS The data suggest that early, preoperatively induced hypothermia could mediate the reduction of neuronal and glial damage in the reperfusion phase of ischemia/reperfusion brain injury.
Collapse
Affiliation(s)
- Shoji Yokobori
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Temporal profiles of axonal injury following impact acceleration traumatic brain injury in rats--a comparative study with diffusion tensor imaging and morphological analysis. Int J Legal Med 2012; 127:159-67. [PMID: 22573358 DOI: 10.1007/s00414-012-0712-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/27/2012] [Indexed: 12/19/2022]
Abstract
Traumatic axonal injury (TAI) plays a major role in the development of neurological impairments after traumatic brain injury (TBI), but it is commonly difficult to evaluate it precisely and early with conventional histological biomarkers, especially when the patients experience short-term survival after TBI. Diffusion tensor imaging (DTI) has shown some promise in detecting TAI, but longitudinal studies on the compromised white matter with DTI at early time points (≤72 h) following impact acceleration TBI are still absent. In the present study, rats were subjected to the Marmarou model and imaged with DTI at 3, 12, 24, and 72 h (n = 5 each) post-injury. Using a region-of-interest-based approach, the regions of interest including the corpus callosum, bilateral external capsule, internal capsule, and pyramidal tract were studied. Two DTI parameters, fraction anisotropy and axial diffusivity, were significantly reduced from 3 to 72 h in each region after trauma, corresponding to the gradient of axonal damage demonstrated by immunohistochemical staining of β-amyloid precursor protein and neurofilament light chain. Remarkably, DTI changes predicted the approximate time in the acute phase following TBI. These results indicate that the temporal profiles of diffusion parameters in DTI may be able to provide a tool for early diagnosis of TAI following impact acceleration TBI.
Collapse
|
40
|
Guzman NA, Phillips TM. Immunoaffinity capillary electrophoresis: A new versatile tool for determining protein biomarkers in inflammatory processes. Electrophoresis 2011; 32:1565-78. [DOI: 10.1002/elps.201000700] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/17/2011] [Accepted: 03/20/2011] [Indexed: 01/22/2023]
|
41
|
Li J, Li XY, Feng DF, Gu L. Quantitative evaluation of microscopic injury with diffusion tensor imaging in a rat model of diffuse axonal injury. Eur J Neurosci 2011; 33:933-45. [DOI: 10.1111/j.1460-9568.2010.07573.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|