1
|
Wilson N, Reese S, Ptak L, Aziz F, Parajuli S, Jucaud V, Denham S, Mishra A, Cascalho M, Platt JL, Hematti P, Djamali A. Ixazomib for Desensitization (IXADES) in Highly Sensitized Kidney Transplant Candidates: A Phase II Clinical Trial. KIDNEY360 2023; 4:e796-e808. [PMID: 36951387 PMCID: PMC10371382 DOI: 10.34067/kid.0000000000000113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
Key Points Ixazomib treatment resulted in decreases in B-cell subsets and bone marrow lymphocytes. Ixazomib treatment resulted in modest decreases in certain anti-HLA antibody specificities. Ixazomib treatment was tolerated, with modest adverse events. Background Ixazomib is a second-generation oral proteasome inhibitor approved for treatment of refractory multiple myeloma. We conducted an open-label phase II trial, IXAzomib for DESensitization (IXADES), testing the safety of ixazomib treatment as an approach to decreasing the level and diversity of specificities of anti-HLA antibodies in subjects awaiting kidney transplantation. The trial (NCT03213158 ) enrolled highly sensitized kidney transplant candidates, defined as subjects with calculated panel reactive antibodies (cPRA) >80%, awaiting kidney transplantation >24 months. The subjects were treated with 12 monthly cycles of ixazomib 3 mg+dexamethasone 20 mg. Efficacy was defined as a decrease of cPRA >20% or kidney transplantation. The safety end point was tolerability. Methods In ten enrolled subjects, no grade IV, five grade III, 11 grade II, and 43 grade I adverse events were noted. The adverse events included infection, transient paresthesia, nausea, vomiting, and diarrhea. The IXADES regimen was not associated with significant change in levels or diversity of anti-HLA antibodies (cPRA). Results Although the IXADES regimen did not exhibit a clear impact on levels and diversity of anti-HLA antibodies in this small cohort, the prolonged half-life of IgG could necessitate a longer duration of treatment for accurate evaluation of efficacy. Conclusions In conclusion, treatment with ixazomib/dexamethasone engendered mild-to-moderate toxicity. The impact on anti-HLA was modest and paradoxical in the case of anti-HLA-DR. Clinical trials combining ixazomib with other immunosuppressive agents may be more effective in addressing antibody-mediated processes in kidney transplantation.
Collapse
Affiliation(s)
- Nancy Wilson
- Department of Pathology and Laboratory Medicine, AVRL, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Shannon Reese
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Lucy Ptak
- Department of Administration, Division of Clinical Trials, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Fahad Aziz
- Department of Medicine, Division of Nephrology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Sandesh Parajuli
- Department of Medicine, Division of Nephrology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | | | | | - Ameet Mishra
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Marilia Cascalho
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey L. Platt
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| | - Peiman Hematti
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Arjang Djamali
- Department of Medicine, Maine Medical Center, Portland, Maine
| |
Collapse
|
2
|
Reese SR, Wilson NA, Huang Y, Ptak L, Degner KR, Xiang D, Redfield RR, Zhong W, Panzer SE. B-cell Deficiency Attenuates Transplant Glomerulopathy in a Rat Model of Chronic Active Antibody-mediated Rejection. Transplantation 2021; 105:1516-1529. [PMID: 33273321 PMCID: PMC8106694 DOI: 10.1097/tp.0000000000003530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transplant glomerulopathy (TG) is a pathological feature of chronic active antibody-mediated rejection (cAMR) and is associated with renal allograft failure. The specific role of B cells in the pathogenesis of TG is unclear. METHODS We used a minor mismatched rat kidney transplant model with B cell-deficient recipients, generated by clustered regularly interspaced short palindromic repeats/Cas9 technology, to investigate the impact of B-cell depletion on the pathogenesis of TG. We hypothesized that B-cell deficiency would prevent TG in the rat kidney transplant model of cAMR. Treatment groups included syngeneic, allogeneic, sensitized allogeneic, and B cell-deficient allogeneic transplant recipients. RESULTS B cell-deficient recipients demonstrated reduced TG lesions, decreased microvascular inflammation, reduced allograft infiltrating macrophages, and reduced interferon gamma transcripts within the allograft. Allograft transcript levels of interferon gamma, monocyte chemoattractant protein-1, and interleukin-1β correlated with numbers of intragraft macrophages. B cell-deficient recipients lacked circulating donor-specific antibodies and had an increased splenic regulatory T-cell population. CONCLUSIONS In this model of cAMR, B-cell depletion attenuated the development of TG with effects on T cell and innate immunity.
Collapse
Affiliation(s)
- Shannon R. Reese
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Nancy A. Wilson
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, China
| | - Lucille Ptak
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Kenna R. Degner
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Ding Xiang
- Department of Organ Transplantation, Xiangya Hospital, Central South University, China
| | - Robert R. Redfield
- Department of Surgery, Division of Transplant Surgery, University of Wisconsin, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin, Madison, WI, United States
| | - Sarah E. Panzer
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
3
|
Fan Y, Liang Z, Zhang J, You G. Oral Proteasomal Inhibitors Ixazomib, Oprozomib, and Delanzomib Upregulate the Function of Organic Anion Transporter 3 (OAT3): Implications in OAT3-Mediated Drug-Drug Interactions. Pharmaceutics 2021; 13:314. [PMID: 33670955 PMCID: PMC7997269 DOI: 10.3390/pharmaceutics13030314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Organic anion transporter 3 (OAT3) is mainly expressed at the basolateral membrane of kidney proximal tubules, and is involved in the renal elimination of various kinds of important drugs, potentially affecting drug efficacy or toxicity. Our laboratory previously reported that ubiquitin modification of OAT3 triggers the endocytosis of OAT3 from the plasma membrane to intracellular endosomes, followed by degradation. Oral anticancer drugs ixazomib, oprozomib, and delanzomib, as proteasomal inhibitors, target the ubiquitin-proteasome system in clinics. Therefore, this study investigated the effects of ixazomib, oprozomib, and delanzomib on the expression and transport activity of OAT3 and elucidated the underlying mechanisms. We showed that all three drugs significantly increased the accumulation of ubiquitinated OAT3, which was consistent with decreased intracellular 20S proteasomal activity; stimulated OAT3-mediated transport of estrone sulfate and p-aminohippuric acid; and increased OAT3 surface expression. The enhanced transport activity and OAT3 expression following drug treatment resulted from an increase in maximum transport velocity of OAT3 without altering the substrate binding affinity, and from a decreased OAT3 degradation. Together, our study discovered a novel role of anticancer agents ixazomib, oprozomib, and delanzomib in upregulating OAT3 function, unveiled the proteasome as a promising target for OAT3 regulation, and provided implication of OAT3-mediated drug-drug interactions, which should be warned against during combination therapies with proteasome inhibitor drugs.
Collapse
Affiliation(s)
| | | | | | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; (Y.F.); (Z.L.); (J.Z.)
| |
Collapse
|
4
|
Ding X, Wilson NA, Redfield RR, Panzer SE, Verhoven B, Reese SR, Zhong W, Shi L, Burlingham WJ, Denlinger LC, Djamali A. Oxidized-ATP Attenuates Kidney Allograft Rejection By Inhibiting T-Cell, B-Cell, and Macrophage Activity. ACTA ACUST UNITED AC 2020; 1:106-114. [DOI: 10.34067/kid.0000692019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
BackgroundExtracellular ATP binds to purinergic receptors and promotes inflammatory responses. We tested whether oxidized ATP (oATP), P2X7 receptor antagonist can attenuate acute kidney allograft rejection.MethodsBrown Norway kidney allografts were transplanted into Lewis recipients. Three groups were defined: oATP (n=8), cyclosporine A (n=6), and no treatment (n=8). On day 7, we assessed kidney allograft survival, function, and rejection characteristics. We further determined T-cell, B-cell, and macrophage response to oATP in vivo and in vitro and examined intragraft inflammatory gene transcripts.ResultsKaplan–Meier survival analyses demonstrated significantly better graft survival rates in oATP and CsA groups compared with no treatment (P<0.05). Similarly, serum creatinine (Scr) and BUN levels were significantly lower in oATP and CsA groups (P<0.05). oATP reduced both T cell–mediated rejection and antibody-mediated rejection, inhibited B-cell and T-cell activation, and downregulated intragraft IL-6 mRNA levels (P<0.0001). In vitro, oATP prevented proliferation in mixed lymphocyte reaction assays, and inhibited macrophage P2X7R activity in a dose-dependent manner.ConclusionsOur findings suggest that oATP mitigates kidney allograft rejection by inhibiting T-cell, B-cell, and macrophage activity and indicate a potential role for the purinergic system and oATP in solid organ transplantation.
Collapse
|
5
|
Nakamura T, Shirouzu T, Kawai S, Matsuyama T, Harada S, Nobori S, Yoshimura N, Ushigome H. Graft Immunocomplex Capture Fluorescence Analysis Can Detect Intragraft Anti-Major Histocompatibility Complex Antibodies in Mice Cardiac Transplant. Transplant Proc 2019; 51:1531-1535. [PMID: 31053346 DOI: 10.1016/j.transproceed.2019.01.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immunocomplex capture fluorescence analysis has recently been applied as a method for detection of intragraft donor-specific anti-major histocompatibility complex (MHC) antibodies (DSA) in humans. Although intragraft DSA in humans is an intense topic of investigation, there is no report to assess intragraft DSA in murine organ transplantation. METHODS A model of presensitized mouse cardiac transplantation by donor splenocytes was used. To capture mouse MHC, anti-MHC class I/II antibodies were immobilized on Luminex beads. The MHC/DSA complexes were captured by the Luminex beads followed by detection of phycoerythrin-conjugated antimouse IgG antibodies where DSA had already reacted with the allograft in vivo. RESULTS Luminex beads were capable of detecting class I DSA in the cardiac allograft, though results for class II DSA were negative. Immunohistochemical investigation revealed that cardiac allografts had abundant MHC class I expression but only minor expression of MHC class II. Furthermore, MHC/class II DSA complexes were successfully detected in splenocytes and serum from a presensitized recipient. CONCLUSIONS These data suggested that graft immunocomplex capture fluorescence analysis can be also applied in murine cardiac transplantation. This novel application in mice would accelerate our comprehension of DSA through mechanistic studies.
Collapse
Affiliation(s)
- T Nakamura
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto-prefecture, Japan.
| | - T Shirouzu
- Wakunaga Pharmaceutical Co, Ltd, Molecular Diagnostics Division, Osaka, Japan
| | - S Kawai
- Wakunaga Pharmaceutical Co, Ltd, Molecular Diagnostics Division, Osaka, Japan
| | - T Matsuyama
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto-prefecture, Japan
| | - S Harada
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto-prefecture, Japan
| | - S Nobori
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto-prefecture, Japan
| | - N Yoshimura
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto-prefecture, Japan
| | - H Ushigome
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kajii-cho 465, Kamigyo-ku, Kyoto-prefecture, Japan
| |
Collapse
|
6
|
Bath NM, Ding X, Wilson NA, Verhoven BM, Boldt BA, Sukhwal A, Reese SR, Panzer SE, Djamali A, Redfield RR. Desensitization and treatment with APRIL/BLyS blockade in rodent kidney transplant model. PLoS One 2019; 14:e0211865. [PMID: 30735519 PMCID: PMC6368307 DOI: 10.1371/journal.pone.0211865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
Alloantibody represents a significant barrier in kidney transplant through the sensitization of patients prior to transplant through antibody mediated rejection (ABMR). APRIL BLyS are critical survival factors for mature B lymphocytes plasma cells, the primary source of alloantibody. We examined the effect of APRIL/BLyS blockade via TACI-Ig (Transmembrane activator calcium modulator cyclophilin lig interactor-Immunoglobulin) in a preclinical rodent model as treatment for both desensitization ABMR. Lewis rats were sensitized with Brown Norway (BN) blood for 21 days. Following sensitization, animals were then sacrificed or romized into kidney transplant (G4, sensitized transplant control); desensitization with TACI-Ig followed by kidney transplant (G5, sensitized + pre-transplant TACI-Ig); kidney transplant with post-transplant TACI-Ig for 21 days (G6, sensitized + post-transplant TACI-Ig); desensitization with TACI-Ig followed by kidney transplant post-transplant TACI-Ig for 21 days (G7, sensitized + pre- post-transplant TACI-Ig). Animals were sacrificed on day 21 post-transplant tissues were analyzed using flow cytometry, IHC, ELISPOT, RT-PCR. Sensitized animals treated with APRIL/BLyS blockade demonstrated a significant decrease in marginal zone non-switched B lymphocyte populations (p<0.01). Antibody secreting cells were also significantly reduced in the sensitized APRIL/BLyS blockade treated group. Post-transplant APRIL/BLyS blockade treated animals were found to have significantly less C4d deposition less ABMR as defined by Banff classification when compared to groups receiving APRIL/BLyS blockade before transplant or both before after transplant (p<0.0001). The finding of worse ABMR in groups receiving APRIL/BLyS blockade before both before after transplant may indicate that B lymphocyte depletion in this setting also resulted in regulatory lymphocyte depletion resulting in a worse rejection. Data presented here demonstrates that the targeting of APRIL BLyS can significantly deplete mature B lymphocytes, antibody secreting cells, effectively decrease ABMR when given post-transplant in a sensitized animal model.
Collapse
Affiliation(s)
- Natalie M. Bath
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiang Ding
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy A. Wilson
- Department of Medicine, Division of Nephrology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bret M. Verhoven
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brittney A. Boldt
- Department of Medicine, Division of Nephrology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adarsh Sukhwal
- Department of Medicine, Division of Nephrology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon R. Reese
- Department of Medicine, Division of Nephrology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sarah E. Panzer
- Department of Medicine, Division of Nephrology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Arjang Djamali
- Department of Medicine, Division of Nephrology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert R. Redfield
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Zhang Z, Wilson NA, Chinnadurai R, Panzer SE, Redfield RR, Reese SR, Galipeau J, Djamali A. Autologous Mesenchymal Stromal Cells Prevent Transfusion-elicited Sensitization and Upregulate Transitional and Regulatory B Cells. Transplant Direct 2018; 4:e387. [PMID: 30234156 PMCID: PMC6133404 DOI: 10.1097/txd.0000000000000827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We hypothesized that immunomodulatory properties of mesenchymal stromal cells (MSC) may be considered for desensitization. METHODS Autologous or allogeneic bone marrow derived MSC were infused via tail vein at 0.5 M (0.5 × 106), 1 M, or 2 M cells/dose on days -2, 3, 6, 9, 12 (prevention) or 14, 17, 20, 23, 26 (treatment) relative to transfusion in a Brown Norway to Lewis rat model (10 groups total, n = 6 per group). RESULTS At 4 weeks, pooled analyses demonstrated that autologous and allogeneic MSC were equally effective in reducing IgG1 and IgG2a de novo donor-specific antibody (dnDSA, P < 0.001). Dose-response studies indicated that moderate-dose MSC (5 M total) was most effective in reducing IgG1, IgG2a, and IgG2c dnDSA (P ≤ 0.01). Time course studies determined that preventive and treatment strategies were equally effective in reducing IgG1 and IgG2a dnDSA (P ≤ 0.01). However, individual group analyses determined that moderate-dose (5 M) treatment with autologous MSC was most effective in reducing IgG1, IgG2a, and IgG2c dnDSA (P ≤ 0.01). In this group, dnDSA decreased after 1 week of treatment; regulatory B cells increased in the spleen and peripheral blood mononuclear cells; and transitional B cells increased in the spleen, peripheral blood mononuclear cells, and bone marrow (P < 0.05 for all). CONCLUSIONS Our findings indicate that autologous MSC prevent transfusion-elicited sensitization and upregulate transitional, and regulatory B cells. Additional studies are needed to determine the biological relevance of these changes after kidney transplantation.
Collapse
Affiliation(s)
- Zijian Zhang
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
- Department of Urology, Beijing Chao-Yang Hospital, China Capital Medical University, Beijing, China
| | - Nancy A. Wilson
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Raghavan Chinnadurai
- Division of Hematology-Oncology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Sarah E. Panzer
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Robert R. Redfield
- Division of Transplant, Department of Surgery, University of Wisconsin, Madison, WI
| | - Shannon R. Reese
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Jacques Galipeau
- Division of Hematology-Oncology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
- Division of Transplant, Department of Surgery, University of Wisconsin, Madison, WI
| |
Collapse
|
8
|
Kühne L, Jung B, Poth H, Schuster A, Wurm S, Ruemmele P, Banas B, Bergler T. Renal allograft rejection, lymphocyte infiltration, and de novo donor-specific antibodies in a novel model of non-adherence to immunosuppressive therapy. BMC Immunol 2017; 18:52. [PMID: 29258420 PMCID: PMC5735914 DOI: 10.1186/s12865-017-0236-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background Non-adherence has been associated with reduced graft survival. The aim of this study was to investigate the immunological mechanisms underlying chronic renal allograft rejection using a model of non-adherence to immunosuppressive therapy. We used a MHC (major histocompatibility complex) -mismatched rat model of renal transplantation (Brown Norway to Lewis), in which rats received daily oral cyclosporine A. In analogy to non-adherence to therapy, one group received cyclosporine A on alternating days only. Rejection was histologically graded according to the Banff classification. We quantified fibrosis by trichrome staining and intra-graft infiltration of T cells, B cells, and monocytes/macrophages by immunohistochemistry. The distribution of B lymphocytes was assessed using immunofluorescence microscopy. Intra-graft chemokine, chemokine receptor, BAFF (B cell activating factor belonging to the TNF family), and immunoglobulin G transcription levels were analysed by RT-PCR. Finally, we evaluated donor-specific antibodies (DSA) and complement-dependent cytotoxicity using flow cytometry. Results After 28 days, cellular rejection occurred during non-adherence in 5/6 animals, mixed with humoral rejection in 3/6 animals. After non-adherence, the number of T lymphocytes were elevated compared to daily immunosuppression. Monocyte numbers declined over time. Accordingly, lymphocyte chemokine transcription was significantly increased in the graft, as was the transcription of BAFF, BAFF receptor, and Immunoglobulin G. Donor specific antibodies were elevated in non-adherence, but did not induce complement-dependent cytotoxicity. Conclusion Cellular and humoral rejection, lymphocyte infiltration, and de novo DSA are induced in this model of non-adherence. Electronic supplementary material The online version of this article (doi: 10.1186/s12865-017-0236-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louisa Kühne
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany.
| | - Bettina Jung
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Helen Poth
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Simone Wurm
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Petra Ruemmele
- Department of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| |
Collapse
|
9
|
Abstract
BACKGROUND We hypothesized that nicotinamide adenosine diphosphate oxidase 2 (Nox2) plays an important role in cyclosporine A (CsA)-induced chronic hypoxia. METHODS We tested this hypothesis in Fisher 344 rats, C57BL/6 J wild type and Nox2-/- mice, and in liver transplant recipients with chronic CsA nephrotoxicity. We used noninvasive molecular imaging (blood oxygen level-dependent magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging) and molecular diagnostic tools to assess intrarenal oxygenation and perfusion, and the molecular phenotype of CsA nephrotoxicity. RESULTS We observed that chemical and genetic inhibition of Nox2 in rats and mice resulted in the prevention of CsA-induced hypoxia independent of regional perfusion (blood oxygen level-dependent magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging, pimonidazole, HIF-1α). Nicotinamide adenosine diphosphate oxidase 2 knockout was also associated with decreased oxidative stress (Nox2, HIF-1α, hydrogen peroxide, hydroxynonenal), and fibrogenesis (α-smooth muscle actin, picrosirius red, trichrome, vimentin). The molecular signature of chronic CsA nephrotoxicity using transcriptomic analyses demonstrated significant changes in 40 genes involved in injury repair, metabolism, and oxidative stress in Nox2-/- mice. Immunohistochemical analyses of kidney biopsies from liver transplant recipients with chronic CsA nephrotoxicity showed significantly greater Nox2, α-smooth muscle actin and picrosirius levels compared with controls. CONCLUSIONS These studies suggest that Nox2 is a modulator of CsA-induced hypoxia upstream of HIF-1α and define the molecular characteristics that could be used for the diagnosis and monitoring of chronic calcineurin inhibitor nephrotoxicity.
Collapse
|
10
|
Novel immunotherapeutic strategies to target alloantibody-producing B and plasma cells in transplantation. Curr Opin Organ Transplant 2016; 21:419-26. [DOI: 10.1097/mot.0000000000000338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|