1
|
Baryła M, Skrzycki M, Danielewicz R, Kosieradzki M, Struga M. Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). Int J Mol Med 2024; 54:107. [PMID: 39370783 PMCID: PMC11448562 DOI: 10.3892/ijmm.2024.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
To meet the demand for kidney transplants (KTx), organs are frequently retrieved not only from standard criteria donors (SCD; a donor who is aged <50 years and suffered brain death from any number of causes, such as traumatic injuries or a stroke) but also from expanded criteria donors (any donor aged >60 years or donors aged >50 years with two of the following: A history of high blood pressure, a creatinine serum level ≥1.5 mg/dl or death resulting from a stroke). This comes at the cost of a higher risk of primary non‑function (the permanent hyperkalemia, hyperuremia and fluid overload that result in the need for continuous dialysis after KTx), delayed graft function (the need for dialysis session at least once during the first week after KTx), earlier graft loss and urinary complications (vesico‑ureteral reflux, obstruction of the vesico‑ureteral anastomosis, urine leakage). At present, there are no commercially available diagnostic tools for assessing kidney quality prior to KTx. Currently available predictive models based on clinical data, such as the Kidney Donor Profile Index, are insufficient. One promising option is the application of perfusion solutions for protein biomarkers of kidney quality and predictors of short‑ and long‑term outcomes. However, to date, protein markers that can be detected with ELISA, western blotting and cytotoxic assays have not been identified to be a beneficial predictors of kidney quality. These include lactate dehydrogenases, glutathione S‑transferases, fatty acid binding proteins, extracellular histones, IL‑18, neutrophil gelatinase‑associated lipocalin, MMPs and kidney injury molecule‑1. However, novel methods, including liquid chromatography‑mass spectrometry (LC‑MS) and microarrays, allow the analysis of all renal proteins suspended/dissolved in the acellular preservation solution used for kidney storage before KTx (including hypothermic machine perfusion as one of kidney storage methods) e.g. Belzer University of Wisconsin. Recent proteomic studies utilizing LC‑MS have identified complement pathway elements (C3, C1QB, C4BPA, C1S, C1R and C1RL), desmoplakin, blood coagulation pathway elements and immunoglobulin heavy variable 2‑26 to be novel predictors of kidney quality before transplantation. This was because they were found to correlate with estimated glomerular filtration rate at 3 and 12 months after kidney transplantation. However, further proteomic studies focusing on distinct markers obtained from hypothermic and normothermic machine perfusion are needed to confirm their predictive value and to improve kidney storage methods. Therefore, the present literature review from PubMed, Scopus, Embase and Web of Science was performed with the aims of summarizing the current knowledge on the most frequently studied single protein biomarkers. In addition, novel analytical methods and insights into organ injury during preservation were documented, where future directions in assessing organ quality before kidney transplantation were also discussed.
Collapse
Affiliation(s)
- Maksymilian Baryła
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Roman Danielewicz
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Maciej Kosieradzki
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Marta Struga
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
2
|
Avramidou E, Srinivasan D, Todorov D, Tsoulfas G, Papalois V. Diagnostic and Prognostic Value of Machine Perfusion Biomarkers in Kidney Graft Evaluation. Transplant Proc 2024; 56:1308-1318. [PMID: 39069459 DOI: 10.1016/j.transproceed.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/24/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND With the rising prevalence of end-stage kidney disease, the use of expanded criteria donor allografts, seen as essential for meeting organ demand, still proves challenging due to their higher risk of graft loss, delayed function, and rejection. Machine perfusion, a technique in preserving allografts, offers improved allograft outcomes compared to static cold storage while allowing for the noninvasive measurement of kidney injury biomarkers in the perfusate solution. This offers an objective method to assess graft function at various preservation stages. MATERIALS AND METHODS We conducted a narrative review of the databases PubMed and Scopus, including studies written in the English language and published after 2010. RESULTS In this narrative review, we identified biomarkers, like 4-hydroxyproline, taurine, and glutathione transferase, as predictive markers of delayed graft function. Additionally, biomarkers, like extracellular histone h3, vascular cell adhesion protein, and matrix metalloprotease protein, have shown correlation with decreased graft function, although their predictive ability remains inconclusive. DISCUSSION The review outlines various suggestions for potential areas of research focus to enhance future expanded criteria donor allograft utilization. However, limitations exist, including the absence of a singular reliable biomarker and the challenges of validating biomarker effectiveness across diverse outcomes.
Collapse
Affiliation(s)
- Eleni Avramidou
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki, Greece.
| | - Divya Srinivasan
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Dominik Todorov
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki, Greece
| | - Vassilios Papalois
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
3
|
van Smaalen TC, Beurskens DMH, Kox JJHFM, Polonia R, Vos R, Duimel H, van de Wetering WJ, López-Iglesias C, Reutelingsperger CP, Ernest van Heurn LW, Peutz-Kootstra CJ, Nicolaes GAF. Extracellular histone release by renal cells after warm and cold ischemic kidney injury: Studies in an ex-vivo porcine kidney perfusion model. PLoS One 2023; 18:e0279944. [PMID: 36662718 PMCID: PMC9858092 DOI: 10.1371/journal.pone.0279944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/17/2022] [Indexed: 01/21/2023] Open
Abstract
Extracellular histones are cytotoxic molecules involved in experimental acute kidney injury. In patients receiving a renal transplant from donors after circulatory death, who suffer from additional warm ischemia, worse graft outcome is associated with higher machine perfusate extracellular histone H3 concentrations. We now investigated temperature-dependent extracellular histone release in an ex vivo porcine renal perfusion model, and subsequently studied histone release in the absence and presence of non-anticoagulant heparin. Seven pairs of ischemically damaged porcine kidneys were machine perfused at 4°C (cold ischemia) or 28°C (warm ischemia). Perfusate histone H3 concentration was higher after warm as compared to cold ischemia (median (IQR) = 0.48 (0.20-0.83) μg/mL vs. 0.02 (0.00-0.06) μg/mL; p = .045, respectively). Employing immune-electron microscopy (EM), histone containing cytoplasmic protrusions of tubular and endothelial cells were found after warm ischemic injury. Furthermore, abundant histone localization was detected in debris surrounding severely damaged glomerular cells, in a "buck shot" pattern. In vitro, histones were cytotoxic to endothelial and kidney epithelial cells in a temperature-dependent manner. In a separate ex vivo experiment, addition of heparin did not change the total histone H3 levels observed in the perfusate but revealed a continuous increase in the level of a lower molecular weight histone H3 variant. Our findings show that ischemically damaged kidneys release more extracellular histones in warm ischemia, which by EM was due to histone release by renal cells. Blocking of histone-mediated damage during transplantation may be beneficial in prevention of renal injury.
Collapse
Affiliation(s)
- Tim C. van Smaalen
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Danielle M. H. Beurskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jasper J. H. F. M. Kox
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rasheendra Polonia
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rein Vos
- Department of Methodology and Statistics, School for Public Health and Primary Care (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Hans Duimel
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute, FHML, Maastricht University, Maastricht, The Netherlands
| | - Willine J. van de Wetering
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute, FHML, Maastricht University, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute, FHML, Maastricht University, Maastricht, The Netherlands
| | - Chris P. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - L. W. Ernest van Heurn
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carine J. Peutz-Kootstra
- Department of Pathology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
A Review of Current and Emerging Trends in Donor Graft-Quality Assessment Techniques. J Clin Med 2022; 11:jcm11030487. [PMID: 35159939 PMCID: PMC8836899 DOI: 10.3390/jcm11030487] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The number of patients placed on kidney transplant waiting lists is rapidly increasing, resulting in a growing gap between organ demand and the availability of kidneys for transplantation. This organ shortage has forced medical professionals to utilize marginal kidneys from expanded criteria donors (ECD) to broaden the donor pool and shorten wait times for patients with end-stage renal disease. However, recipients of ECD kidney grafts tend to have worse outcomes compared to those receiving organs from standard criteria donors (SCD), specifically increased risks of delayed graft function (DGF) and primary nonfunction incidence. Thus, representative methods for graft-quality assessment are strongly needed, especially for ECDs. Currently, graft-quality evaluation is limited to interpreting the donor’s recent laboratory tests, clinical risk scores, the visual evaluation of the organ, and, in some cases, a biopsy and perfusion parameters. The last few years have seen the emergence of many new technologies designed to examine organ function, including new imaging techniques, transcriptomics, genomics, proteomics, metabolomics, lipidomics, and new solutions in organ perfusion, which has enabled a deeper understanding of the complex mechanisms associated with ischemia-reperfusion injury (IRI), inflammatory process, and graft rejection. This review summarizes and assesses the strengths and weaknesses of current conventional diagnostic methods and a wide range of new potential strategies (from the last five years) with respect to donor graft-quality assessment, the identification of IRI, perfusion control, and the prediction of DGF.
Collapse
|
5
|
Tatsis V, Dounousi E, Mitsis M. Hypothermic Machine Perfusion of Kidney Transplant: A Mini-Review. Transplant Proc 2021; 53:2793-2796. [PMID: 34696905 DOI: 10.1016/j.transproceed.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Most kidney grafts are marginal and from deceased donors, which yield worse clinical outcomes. Hypothermic machine perfusion has created a paradigm shift in kidney preservation. This mini-review summarizes the main points of hypothermic machine perfusion of kidney transplants that should be known by any physician and surgeon involved with kidney transplantation. Specifically, this review explains a proposed mechanism of action of hypothermic machine perfusion of kidney transplants. This review also describes the clinical effectiveness of hypothermic machine perfusion and explains how to evaluate and predict graft functionality according to machine parameters and perfusate biomarkers. Finally, treatment options and the most recent studies on oxygenated hypothermic machine perfusion are mentioned.
Collapse
Affiliation(s)
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|
6
|
Novruzov N, Ersan V, Bayramov N, Otlu B, Aliyev E, Ince V, Isik B, Yilmaz S, Karipkiz Y. Extracellular Histones H3 as a Prognostic Blood Marker for Delayed Liver Function Recovery After Donor Hepatectomy. Transplant Proc 2021; 53:2305-2311. [PMID: 34452737 DOI: 10.1016/j.transproceed.2021.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Early prediction of liver dysfunction after liver resection remains a challenge. We hypothesized that extracellular histone concentrations are a promising new biomarker for the detection of liver injury after donor hepatectomy. METHODS This prospective study considered 93 living donors who underwent hepatectomy. Blood samples of donors were collected on postoperative day 1, and histone levels in the plasma samples of the patients were measured with total histone H3 sandwich ELISA kits. Among 86 right lobe donors, 23 (26.7%) were deemed to have a delayed liver function recovery according to the International Study Group of Liver Surgery's definition of posthepatectomy liver failure, whereas 63 (73.3%) were considered to have an adequate liver function recovery. RESULTS The area under the receiver operating characteristic (ROC) curve for circulating histones in predicting persistent liver dysfunction was 0.618 ± 0.06 (95% confidence interval [CI], 0.501-0.735; P = .091). The cutoff point value obtained from the analysis of ROC curves was 0.895, with a sensitivity of 95.7% and a specificity of 32.9%, respectively, for examining a delayed liver function recovery (P = .015). The Fisher analysis significantly verified these results empirical influence function % 7.90 (95% CI, 3.91-11.90; P = .006). The univariate analysis determined that postoperative histones were identified as an independent risk factor of delayed liver function recovery (odds ratio, 10.8; 95% CI, 1.4-84.9; P = .024). CONCLUSIONS The circulating histone negatively correlates with liver dysfunctions after donor hepatectomy and had the best value in predicting liver dysfunction within 24 hours after liver resection.
Collapse
Affiliation(s)
- Namig Novruzov
- Department of Surgery, Central Customs Hospital, Baku, Azerbaijan.
| | - Veysel Ersan
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| | | | - Baris Otlu
- Department of Clinical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | | | - Volkan Ince
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| | - Burak Isik
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| | - Sezai Yilmaz
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| | - Yunus Karipkiz
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| |
Collapse
|
7
|
Huckriede J, Anderberg SB, Morales A, de Vries F, Hultström M, Bergqvist A, Ortiz-Pérez JT, Sels JW, Wichapong K, Lipcsey M, van de Poll M, Larsson A, Luther T, Reutelingsperger C, de Frutos PG, Frithiof R, Nicolaes GAF. Evolution of NETosis markers and DAMPs have prognostic value in critically ill COVID-19 patients. Sci Rep 2021; 11:15701. [PMID: 34344929 PMCID: PMC8333321 DOI: 10.1038/s41598-021-95209-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) presents with disease severities of varying degree. In its most severe form, infection may lead to respiratory failure and multi-organ dysfunction. Here we study the levels and evolution of the damage associated molecular patterns (DAMPS) cell free DNA (cfDNA), extracellular histone H3 (H3) and neutrophil elastase (NE), and the immune modulators GAS6 and AXL in relation to clinical parameters, ICU scoring systems and mortality in patients (n = 100) with severe COVID-19. cfDNA, H3, NE, GAS6 and AXL were increased in COVID-19 patients compared to controls. These measures associated with occurrence of clinical events and intensive care unit acquired weakness (ICUAW). cfDNA and GAS6 decreased in time in patients surviving to 30 days post ICU admission. A decrease of 27.2 ng/mL cfDNA during ICU stay associated with patient survival, whereas levels of GAS6 decreasing more than 4.0 ng/mL associated with survival. The presence of H3 in plasma was a common feature of COVID-19 patients, detected in 38% of the patients at ICU admission. NETosis markers cfDNA, H3 and NE correlated well with parameters of tissue damage and neutrophil counts. Furthermore, cfDNA correlated with lowest p/f ratio and a lowering in cfDNA was observed in patients with ventilator-free days.
Collapse
Affiliation(s)
- Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Sara Bülow Anderberg
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, and BCLC, CIBEREHD, Barcelona, Spain
| | - Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Michael Hultström
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Anders Bergqvist
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - José T Ortiz-Pérez
- Cardiology Department, Hospital Clinic Barcelona and CIBERCV, Barcelona, Spain
| | - Jan Willem Sels
- Department of Intensive Care Medicine, Maastricht University Medical Centre MUMC+), Maastricht, the Netherlands
- Department of Cardiology, Maastricht University Medical Centre, MUMC+), Maastricht, the Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Miklos Lipcsey
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Marcel van de Poll
- Department of Intensive Care Medicine, Maastricht University Medical Centre MUMC+), Maastricht, the Netherlands
- Department of Surgery, Maastricht University Medical Centre (MUMC+), School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Tomas Luther
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Pablo Garcia de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS and CIBERCV, Barcelona, Spain
| | - Robert Frithiof
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Assessing Kidney Graft Viability and Its Cells Metabolism during Machine Perfusion. Int J Mol Sci 2021; 22:ijms22031121. [PMID: 33498732 PMCID: PMC7865666 DOI: 10.3390/ijms22031121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Kidney transplantation is the golden treatment for end-stage renal disease. Static cold storage is currently considered the standard method of preservation, but dynamic techniques, such as machine perfusion (MP), have been shown to improve graft function, especially in kidneys donated by extended criteria donors and donation after circulatory death. With poor organ quality being a major reason for kidneys not being transplanted, an accurate, objective and reliable quality assessment during preservation could add value and support to clinicians’ decisions. MPs are emerging technologies with the potential to assess kidney graft viability and quality, both in the hypothermic and normothermic scenarios. The aim of this review is to summarize current tools for graft viability assessment using MP prior to implantation in relation to the ischemic damage.
Collapse
|
9
|
Structure-based peptide design targeting intrinsically disordered proteins: Novel histone H4 and H2A peptidic inhibitors. Comput Struct Biotechnol J 2021; 19:934-948. [PMID: 33598107 PMCID: PMC7856395 DOI: 10.1016/j.csbj.2021.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Intrinsically disordered proteins/protein regions (IDPs/IDPRs) are emerging drug targets. Lack of fast methods hinders the discovery of inhibitors for IDPs/ IDPRs. Fast and inexpensive structure-based approaches have been developed. The developed methods were applied to succesfully design inhibitors targeting the disordered tail of histone H4 and H2A. The presented methods can be widely used to identify inhibitors for other IDPs/IDPRs.
A growing body of research has demonstrated that targeting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) is feasible and represents a new trending strategy in drug discovery. However, the number of inhibitors targeting IDPs/IDPRs is increasing slowly due to limitations of the methods that can be used to accelerate the discovery process. We have applied structure-based methods to successfully develop the first peptidic inhibitor (HIPe - Histone Inhibitory Peptide) that targets histone H4 that are released from NETs (Neutrophil Extracellular Traps). HIPe binds stably to the disordered N-terminal tail of histone H4, thereby preventing histone H4-induced cell death. Recently, by utilisation of the same state-of-the-art approaches, we have developed a novel peptidic inhibitor (CHIP - Cyclical Histone H2A Interference Peptide) that binds to NET-resident histone H2A, which results in a blockade of monocyte adhesion and consequently reduction in atheroprogression. Here, we present comprehensive details on the computational methods utilised to design and develop HIPe and CHIP. We have exploited protein–protein complexes as starting structures for rational peptide design and then applied binding free energy methods to predict and prioritise binding strength of the designed peptides with histone H4 and H2A. By doing this way, we have modelled only around 20 peptides and from these were able to select 4–5 peptides, from a total of more than a trillion candidate peptides, for functional characterisation in different experiments. The developed computational protocols are generic and can be widely used to design and develop novel inhibitors for other disordered proteins.
Collapse
Key Words
- ARDS, acute respiratory distress syndrome
- BFE, binding free energy
- BRCA-1, breast cancer type1 susceptibility protein
- CCL5, chemokine ligand 5
- CHIP, cyclical histone H2A interference peptide
- Computer-aided molecular design (CAMD)
- DC, decomposition
- Disordered proteins
- H2A, histone H2A
- H2B, histone H2B
- H3, histone H3
- H4, histone H4
- HIPe, histone inhibitory peptide
- HNP1, human neutrophil peptide 1
- Histones
- IDPRs, intrinsically disordered protein regions
- IDPs, intrinsically disordered proteins
- MD, molecular dynamics
- MM/GBSA, molecular mechanics/generalised born surface area
- NETs, neutrophil extracellular traps
- Neutrophil extracellular traps (NETs)
- PDB, protein data bank
- PPIs, protein-protein interactions
- PTP1B, protein tyrosine phosphatase 1B
- Peptides
- Protein-protein interactions (PPIs)
- SMCs, smooth muscle cells
- aMD, accelerated molecular dynamics
- p53, tumor protein 53
Collapse
|
10
|
Swanson KJ, Aziz F, Garg N, Mohamed M, Mandelbrot D, Djamali A, Parajuli S. Role of novel biomarkers in kidney transplantation. World J Transplant 2020; 10:230-255. [PMID: 32995319 PMCID: PMC7504189 DOI: 10.5500/wjt.v10.i9.230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
Clinical application of biomarkers is an integral component of transplant care. Clinicians and scientists alike are in search of better biomarkers than the current serologic (serum creatinine, donor-specific antibodies), urine-derived (urinalysis, urine protein), and histologic ones we now use. The science behind recent biomarker discovery spans across multiple molecular biologic disciplines, including transcriptomics, proteomics, and metabolomics. Innovative methodology and integration of basic and clinical approaches have allowed researchers to unearth molecular phenomena preceding clinical disease. Biomarkers can be classified in several ways. In this review, we have classified them via their origin and outcome: Primarily immunologic, i.e., representative of immune regulation and dysfunction and non-immunologic, pertaining to delayed graft function, cardiovascular events/mortality, infection, malignancy, post-transplant diabetes, graft, and patient survival. Novel biomarker uses to guide the diagnosis and management of transplant-related outcomes is a promising area of research. However, the use of biomarkers to predict outcomes after kidney transplantation is not well studied. In this review, we summarize the recent studies illustrating biomarker use and transplant outcomes.
Collapse
Affiliation(s)
- Kurtis J Swanson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Fahad Aziz
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Neetika Garg
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Maha Mohamed
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Didier Mandelbrot
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Arjang Djamali
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Sandesh Parajuli
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| |
Collapse
|
11
|
Li T, Jiang H, Liu H, Cooper DKC, Wang Y. Extracellular histones and xenotransplantation. Xenotransplantation 2020; 27:e12618. [PMID: 32940936 DOI: 10.1111/xen.12618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Tao Li
- Department of Organ Transplantation The Second Affiliated Hospital of Hainan Medical University Haikou Hainan China
- The Transplantation Insititute of Hainan Medical University Haikou Hainan China
| | - Hongtao Jiang
- Department of Organ Transplantation The Second Affiliated Hospital of Hainan Medical University Haikou Hainan China
- The Transplantation Insititute of Hainan Medical University Haikou Hainan China
| | - Houqin Liu
- Department of Organ Transplantation The Second Affiliated Hospital of Hainan Medical University Haikou Hainan China
- The Transplantation Insititute of Hainan Medical University Haikou Hainan China
| | - David K. C. Cooper
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - Yi Wang
- Department of Organ Transplantation The Second Affiliated Hospital of Hainan Medical University Haikou Hainan China
- The Transplantation Insititute of Hainan Medical University Haikou Hainan China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The shortage of kidneys for transplantation has led to an urgent need to efficiently utilize the available cadaveric kidneys. Efficient use of machine perfusion may potentially lead to increased use of marginal kidneys by lowering the incidence of delayed graft function (DGF) and improving graft outcomes. RECENT FINDINGS Machine perfusion has had a resurgence in the last 10-15 years over static cold storage (SCS). Hypothermic machine perfusion (HMP), the most commonly utilized type of machine perfusion reduces the rates of DGF when compared with SCS with a trend towards improving the overall graft survival. SUMMARY Despite reduction in the rates of DGF by HMP, its effect on long-term renal and patient outcomes is not clearly known. There is limited clinical literature in the use of normothermic machine perfusion (NMP) but a few pilot studies have shown its potential to resuscitate commonly discarded kidneys. In addition to preservation, machine perfusion also allows for various diagnostic and therapeutic interventions during the preservation period to assess and optimize the viability of the procured kidney.
Collapse
|
13
|
Jin Y, Sun M, Lv X, Wang X, Jiang G, Chen C, Wen Z. Extracellular histones play a pathogenic role in primary graft dysfunction after human lung transplantation. RSC Adv 2020; 10:12485-12491. [PMID: 35497627 PMCID: PMC9051052 DOI: 10.1039/d0ra00127a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Primary graft dysfunction (PGD) causes early mortality and late graft failure after lung transplantation. The mechanisms of PGD are not fully understood but ischemia/reperfusion (I/R) injury may be involved. Extracellular histones have recently been identified as major contributors to I/R injury. Hence, we investigated whether extracellular histones are associated with PGD after lung transplantation. In total, 65 lung transplant patients were enrolled into this study. Blood samples were collected from patients before and serially after transplantation (24 h, 48 h, and 72 h) and measured for extracellular histones, myeloperoxidase (MPO), lactate dehydrogenase (LDH), and multiple cytokines. Besides, the patients' sera were cultured with human pulmonary artery endothelial cells (HPAEC) and human monocyte cell line (THP1) cells, respectively, and cellular viability and cytokine production were determined. Heparin or anti-histone antibody were used to study the effects of histone-neutralized interventions. The results showed that extracellular histones increased markedly after lung transplantation, peaked by 24 h and tended to decrease thereafter, but still retained high levels up to 72 h. Extracellular histones were more abundant in patients with PGD (n = 8) than patients without PGD (n = 57) and linearly correlated with MPO, LDH, and most detected cytokines. Ex vivo studies showed that the patients' sera collected within 24 h after transplantation were very damaging to HPAEC cells and promoted cytokine production in cultured THP1 cells, which could be largely prevented by heparin or anti-histone antibodies. These data suggested a pathogenic role for extracellular histones in PGD after lung transplantation. Targeting extracellular histones may serve as a preventive and therapeutic strategy for PGD following lung transplantation.
Collapse
Affiliation(s)
- Yang Jin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine Zhengmin Road 507 Shanghai 200433 China
| | - Meng Sun
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine Zhengmin Road 507 Shanghai 200433 China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine Zhengmin Road 507 Shanghai 200433 China
| | - Xingan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine Pittsburgh PA 15213 USA
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine Shanghai 200433 China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine Shanghai 200433 China
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine Zhengmin Road 507 Shanghai 200433 China
| |
Collapse
|
14
|
Kidney Perfusion as an Organ Quality Assessment Tool-Are We Counting Our Chickens Before They Have Hatched? J Clin Med 2020; 9:jcm9030879. [PMID: 32210197 PMCID: PMC7141526 DOI: 10.3390/jcm9030879] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
The final decision to accept an organ for transplantation remains a subjective one. With “poor organ quality” commonly cited as a major reason for kidney discard, accurate, objective, and reliable quality assessment is essential. In an era of increasingly higher-risk deceased donor kidneys, the catch is to accept those where the risk–benefit scale will tip in the right direction. Currently available assessment tools, such as risk-scores predicting outcome and zero-time biopsy, perform unsatisfactory, and assessment options during static cold storage are limited. Kidney perfusion technologies are finding their way into clinical practice, and they bring a new opportunity to assess kidney graft viability and quality, both in hypothermic and normothermic conditions. We give an overview of the current understanding of kidney viability assessment during ex situ kidney perfusion. A pragmatic framework to approach viability assessment is proposed as an interplay of three different compartments: the nephron, the vascular compartment, and the immune compartment. Although many interesting ways to assess kidney injury and function during perfusion have been proposed, none have reached the stage where they can reliably predict posttransplant outcome. Larger well-designed studies and validation cohorts are needed to provide better guidance.
Collapse
|
15
|
Guzzi F, Knight SR, Ploeg RJ, Hunter JP. A systematic review to identify whether perfusate biomarkers produced during hypothermic machine perfusion can predict graft outcomes in kidney transplantation. Transpl Int 2020; 33:590-602. [PMID: 32031281 DOI: 10.1111/tri.13593] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
There is good evidence to support the use of hypothermic machine perfusion (HMP) over static cold storage as the favoured preservation method for deceased donor kidneys. However, the utility of HMP as a tool to assess the viability of kidneys for transplant is unclear. There is a need to determine whether perfusate biomarkers produced during HMP can predict post-transplant outcomes and assess the suitability of organs for transplantation. Three different databases (MEDLINE, Embase, Transplant Library) were screened to 31 May 2019. Articles were included if a relationship was reported between one or more perfusate biomarkers and post-transplant outcomes. Studies were assessed and graded for methodological quality and strength of evidence. Glutathione S-transferase was the most promising biomarker for predicting delayed graft function, but its predictive ability was at best moderate. Analysis of primary nonfunction rates was challenging due to low occurrence rates and small sample sizes. Existing studies are limited in quality and have not yielded biomarkers for kidneys undergoing HMP that are able to predict post-transplant outcomes with sufficient accuracy to support routine clinical use. Further studies with larger samples and more robust methodology are needed. (PROSPERO registration: CRD42019121161).
Collapse
Affiliation(s)
- Francesco Guzzi
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Churchill Hospital, University of Oxford, Oxford, UK.,Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Simon R Knight
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Churchill Hospital, University of Oxford, Oxford, UK
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Churchill Hospital, University of Oxford, Oxford, UK.,Oxford Biomedical Research Centre, Oxford, UK
| | - James P Hunter
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model. Transplantation 2019; 102:e205-e210. [PMID: 29424767 DOI: 10.1097/tp.0000000000002123] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). METHODS We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. RESULTS During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). CONCLUSIONS HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.
Collapse
|
17
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
18
|
Abstract
This review is focused on present and future biomarkers, along with pharmacogenomics used in clinical practice for kidney transplantation. It aims to highlight biomarkers that could potentially be used to improve kidney transplant early and long-term graft survival, but also potentially patient co-morbidity. Future directions for improving outcomes are discussed, which include immune tolerance and personalising immunosuppression regimens.
Collapse
|
19
|
|