1
|
Cai X, Cao J, Wang L, Zou J, Li R, Sun P, Ding X, Zhang B, Liu Z, Pei X, Yang J, Zhan Y, Liu N, Liu T, Liang R, Gao J, Wang S. Liraglutide Protects Pancreatic Islet From Ischemic Injury by Reducing Oxidative Stress and Activating Akt Signaling During Cold Preservation to Improve Islet Transplantation Outcomes. Transplantation 2024; 108:e156-e169. [PMID: 38578708 DOI: 10.1097/tp.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Islet transplantation is a promising therapy for patients with type 1 diabetes. However, ischemic injury to the donor islets during cold preservation leads to reduced islet quality and compromises transplant outcome. Several studies imply that liraglutide, a glucagon-like peptide-1 receptor agonist, has a positive effect on promoting islet survival, but its impact on islet cold-ischemic injury remains unexplored. Therefore, the aim of this study was to investigate whether liraglutide can improve islet transplantation efficacy by inhibiting cold-ischemic injury and to explore the underlying mechanisms. METHODS Liraglutide was applied in a mouse pancreas preservation model and a human islets cold-preservation model, and islet viability, function, oxidative stress levels were evaluated. Furthermore, islet transplantation was performed in a syngeneic mouse model and a human-to-nude mouse islet xenotransplantation model. RESULTS The supplementation of liraglutide in preservation solution improved islet viability, function, and reduced cell apoptosis. Liraglutide inhibited the oxidative stress of cold-preserved pancreas or islets through upregulating the antioxidant enzyme glutathione levels, inhibiting reactive oxygen species accumulation, and maintaining the mitochondrial membrane integrity, which is associated with the activation of Akt signaling. Furthermore, the addition of liraglutide during cold preservation of donor pancreas or donor islets significantly improved the subsequent transplant outcomes in both syngeneic mouse islet transplantation model and human-to-nude mouse islet xenotransplantation model. CONCLUSIONS Liraglutide protects islets from cold ischemia-related oxidative stress during preservation and hence improved islet transplantation outcomes, and this protective effect of liraglutide in islets is associated with the activation of Akt signaling.
Collapse
Affiliation(s)
- Xiangheng Cai
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Le Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Rui Li
- Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Peng Sun
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xuejie Ding
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xirui Pei
- First Clinical Department, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jiuxia Yang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yixiang Zhan
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Shusen Wang
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Pancreas Preservation in Modified Histidine-lactobionate Solution Is Superior to That in University of Wisconsin Solution for Porcine Islet Isolation. Transplantation 2022; 106:1770-1776. [PMID: 36001489 DOI: 10.1097/tp.0000000000003636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously reported that modified extracellular-type trehalose-containing Kyoto (MK) solution, which contains a trypsin inhibitor (ulinastatin), significantly improved the islet yield compared with University of Wisconsin (UW) preservation, which is the gold standard for organ preservation for islet isolation. In this study, we evaluated the efficiency of a modified histidine-lactobionate (MHL) solution in addition to UW or MK solution. The MHL solution has a high sodium-low potassium composition with low viscosity compared with the UW solution. Moreover, similar to MK solution, MHL solution also contains ulinastatin. METHODS Porcine pancreata were preserved in UW, MK, or MHL solution, followed by islet isolation. An optimized number (1500 IE) of isolated islets from each group were then transplanted into streptozotocin-induced diabetic mice. RESULTS The islet yield before and after purification was significantly higher in the MHL group than in the UW group. On the contrary, the islet yield before and after purification was not significantly different between the MHL and MK groups. Preserving the porcine pancreata in MHL solution improved the outcome of islet transplantation in streptozotocin-induced diabetic mice compared with that in UW solution. CONCLUSIONS Pancreas preservation with MHL solution preserves islet function better than UW solution. The effect of MHL solution is similar to that of MK solution, suggesting that MHL solution can be used as an alternative to MK solution for pancreatic islet transplantation.
Collapse
|
3
|
Nishime K, Miyagi-Shiohira C, Kuwae K, Tamaki Y, Yonaha T, Sakai-Yonaha M, Saitoh I, Watanabe M, Noguchi H. Preservation of pancreas in the University of Wisconsin solution supplemented with AP39 reduces reactive oxygen species production and improves islet graft function. Am J Transplant 2021; 21:2698-2708. [PMID: 33210816 DOI: 10.1111/ajt.16401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 11/15/2020] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) results in increased rates of delayed graft function and early graft loss. It has recently been reported that hydrogen sulfide (H2 S) protects organ grafts against prolonged IRI. Here, we investigated whether the preservation of pancreas in University of Wisconsin (UW) solution supplemented with AP39, which is a mitochondrial-targeted H2 S donor, protected pancreatic islets against IRI and improved islet function. Porcine pancreata were preserved in the UW solution with AP39 (UW + AP39) or the vehicle (UW) for 18 h, followed by islet isolation. The islet yields before and after purification were significantly higher in the UW + AP39 group than in the UW group. The islets isolated from the pancreas preserved in UW + AP39 exhibited significantly decreased levels of reactive oxygen species (ROS) production and a significantly increased mitochondrial membrane potential as compared to the islets isolated from the pancreas preserved in the vehicle. We found that the pancreas preserved in UW + AP39 improved the outcome of islet transplantation in streptozotocin-induced diabetic mice. These results suggest that the preservation of pancreas in UW + AP39 protects the islet grafts against IRI and could thus serve as a novel clinical strategy for improving islet transplantation outcomes.
Collapse
Affiliation(s)
- Kai Nishime
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tasuku Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mayuko Sakai-Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
4
|
de Sousa SG, Nascimento da Silva GV, Costa Rodrigues AM, Meireles Fernandes da Silva TM, Costa FC, Freitas Teixeira da Silva A, Santana de Macedo BF, Brito MVH. Organ Preservation Solutions in Transplantation: A Literature Review. EXP CLIN TRANSPLANT 2021; 19:511-521. [PMID: 33797354 DOI: 10.6002/ect.2020.0506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Renal transplant with ABO-incompatible donors expands the donor pool. Earlier studies have focused the use of protocol biopsies in ABOincompatible transplant patients. Our study described outcomes of indication (for cause) renal biopsies and clinical outcomes in patients with ABO-incompatible renal transplant. MATERIALS AND METHODS This retrospective study included 164 patients from January 2012 to June 2019. Biochemical parameters, serial immunoglobulin G anti-ABO titers, and class I and II donor-specific antibody findings were obtained from hospital records, and renal graft biopsies were reviewed according to the Banff 2017 update. RESULTS We analyzed the results of 65 biopsies from 54 patients. Biopsy-proven acute antibody-mediated rejection (12.8%) was found to be more prevalent than acute cellular rejection (1.8%). Patients with antibodymediated rejection all had microvascular inflammation (g+ptc score of 2 or more, where g+ptc is the sum of the glomerulitis and peritubular capillaritis scores) and were positive for C4d. Acute tubular injury per se was seen in 10.3% of patients; 65% of these patients had C4d positivity in peritubular capillaries, and only 1 patient developed chronic active antibody-mediated rejection on follow-up. Patient and death-censored graft survival rates were 92% and 98% at 1 year after transplant and 88% and 91% at 3 years, respectively. Patients with an episode of antibody-mediated rejection had lower rates of patient (76.5%) and deathcensored graft survival (84.6%) at 1 year. CONCLUSIONS The microvascular inflammation score (g+ptc score of 2 or higher) is more reliable than diffuse C4d positivity to determine antibody-mediated rejection in ABO-incompatible transplants because diffuse C4d positivity may also be seen in etiologies unrelated to antibody-mediated rejection. Acute tubular injury with C4d positivity without microvascular injury does not confirm antibody-mediated rejection. We suggest that Banff classification be updated in ABOincompatible transplants to include diagnostic criteria for the diagnosis of antibody-mediated rejection.
Collapse
|
5
|
Noguchi H. Pancreatic Islet Purification from Large Mammals and Humans Using a COBE 2991 Cell Processor versus Large Plastic Bottles. J Clin Med 2020; 10:jcm10010010. [PMID: 33374512 PMCID: PMC7793136 DOI: 10.3390/jcm10010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
The islet purification step in clinical islet isolation is important for minimizing the risks associated with intraportal infusion. Continuous density gradient with a COBE 2991 cell processor is commonly used for clinical islet purification. However, the high shear force involved in the purification method using the COBE 2991 cell processor causes mechanical damage to the islets. We and other groups have shown human/porcine islet purification using large cylindrical plastic bottles. Shear stress can be minimized or eliminated using large cylindrical plastic bottles because the bottles do not have a narrow segment and no centrifugation is required during tissue loading and the collection processes of islet purification. This review describes current advances in islet purification from large mammals and humans using a COBE 2991 cell processor versus large cylindrical plastic bottles.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
6
|
Yonaha T, Miyagi-Shiohira C, Kuwae K, Tamaki Y, Nishime K, Sakai-Yonaha M, Saitoh I, Watanabe M, Noguchi H. Pancreas preservation in extracellular-type p38 inhibitor-containing solution improves islet yield for porcine islet isolation. Xenotransplantation 2020; 28:e12661. [PMID: 33231337 DOI: 10.1111/xen.12661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND For islet transplantation, pancreas preservation and islet isolation activate p38, which is a member of the stress-activated group of mitogen-activated protein kinases (MAPKs). In this study, we evaluated an extracellular-type p38 inhibitor-containing (EP) solution with University of Wisconsin (UW) solution, the gold standard for organ preservation. The EP solution has high sodium-low potassium composition with low viscosity compared to UW solution. Moreover, EP solution contains a recently developed p38 inhibitor (11R-p38I110 ) from our laboratory. METHODS Porcine pancreata were preserved in UW, EP, or EP-P solution (EP solution without 11R-p38I110 ), and then islet isolation was performed. An optimized number (1500 IE) of isolated islets from each group were transplanted into streptozotocin-induced diabetic mice. RESULTS The islet yield before and after purification was significantly higher in the EP group than in the UW group. The islet yield before and after purification was not significantly different between the EP and EP-P groups; however, the EP solution prevented a reduction in the number of islets during culture. Western blot analysis showed that p38 activation was attenuated by EP solution. For islet transplantation into streptozotocin-induced diabetic mice, pancreas preservation in EP solution improved the outcome of islet transplantation. CONCLUSIONS Pancreas preservation with EP solution preserved islet function better than with UW solution. The advantages of EP solution over UW solution may include the inhibition of p38 activity as well as the composition of the solution.
Collapse
Affiliation(s)
- Tasuku Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kai Nishime
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mayuko Sakai-Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
7
|
Fernández AR, Sánchez-Tarjuelo R, Cravedi P, Ochando J, López-Hoyos M. Review: Ischemia Reperfusion Injury-A Translational Perspective in Organ Transplantation. Int J Mol Sci 2020; 21:ijms21228549. [PMID: 33202744 PMCID: PMC7696417 DOI: 10.3390/ijms21228549] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Thanks to the development of new, more potent and selective immunosuppressive drugs together with advances in surgical techniques, organ transplantation has emerged from an experimental surgery over fifty years ago to being the treatment of choice for many end-stage organ diseases, with over 139,000 organ transplants performed worldwide in 2019. Inherent to the transplantation procedure is the fact that the donor organ is subjected to blood flow cessation and ischemia during harvesting, which is followed by preservation and reperfusion of the organ once transplanted into the recipient. Consequently, ischemia/reperfusion induces a significant injury to the graft with activation of the immune response in the recipient and deleterious effect on the graft. The purpose of this review is to discuss and shed new light on the pathways involved in ischemia/reperfusion injury (IRI) that act at different stages during the donation process, surgery, and immediate post-transplant period. Here, we present strategies that combine various treatments targeted at different mechanistic pathways during several time points to prevent graft loss secondary to the inflammation caused by IRI.
Collapse
Affiliation(s)
- André Renaldo Fernández
- Immunology, Universitary Hospital Marqués de Valdecilla- Research Institute IDIVAL Santander, 390008 Santander, Spain;
| | - Rodrigo Sánchez-Tarjuelo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.S.-T.); (J.O.)
- Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.S.-T.); (J.O.)
- Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Marcos López-Hoyos
- Immunology, Universitary Hospital Marqués de Valdecilla- Research Institute IDIVAL Santander, 390008 Santander, Spain;
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-942-292759
| |
Collapse
|
8
|
Bilirubin Improves the Quality and Function of Hypothermic Preserved Islets by Its Antioxidative and Anti-inflammatory Effect. Transplantation 2020; 103:2486-2496. [PMID: 31365475 DOI: 10.1097/tp.0000000000002882] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Islet transplantation is a promising option for the treatment of type 1 diabetes. However, the current lack of practical techniques for the isolated islets preservation still hampers the advancement of life-saving islet transplantation. Islet suffers from internal or external stimuli-induced oxidative stress and subsequent inflammation during preservation, which leads to disappointing outcomes regarding islet yield, survival, and function. Reactive oxygen species (ROS) overproduction is the primary cause of oxidative stress that induces islet loss and dysfunction. Thus, in this article, we hypothesized that an endogenous antioxidant, bilirubin, that could efficiently scavenge ROS and inhibit inflammatory reactions could be beneficial for islet preservation. METHODS Herein, we studied the effect of bilirubin on the hypothermic preserved (4°C) islets and evaluate the islets viability, insulin secretory function, oxidative stress levels, and in vivo transplantation performance. RESULTS Bilirubin could prevent cellular damages during short-term preservation and maintain the cocultured islets viability and function. The protective role of bilirubin is associated with its antioxidative ability, which dramatically increased the activities of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreased the levels of ROS and malondialdehyde. Diabetic mice transplanted with bilirubin preserved islets were normoglycemic for 28 days, even overmatched the diabetic mouse transplanted with fresh islets. Mice receiving bilirubin cocultured islets required the least time to achieve normoglycemia among all groups and exhibited minimum inflammatory responses during the early transplantation stage. CONCLUSIONS By utilizing bilirubin, we achieved highly viable and functional islets after hypothermic preservation to reverse diabetes in mice.
Collapse
|
9
|
Noguchi H, Miyagi-Shiohira C, Nakashima Y, Saitoh I, Watanabe M. Novel cell-permeable p38-MAPK inhibitor efficiently prevents porcine islet apoptosis and improves islet graft function. Am J Transplant 2020; 20:1296-1308. [PMID: 31834983 DOI: 10.1111/ajt.15740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023]
Abstract
During islet transplantation, mitogen-activated protein kinase (MAPK) p38 is preferentially activated in response to the isolation of islets and the associated inflammation. Although therapeutic effects of p38 inhibitors are expected, the clinical application of small-molecule inhibitors of p38 is not recommended because of their serious adverse effects on the liver and central nervous system. Here we designed peptides to inhibit p38, which were derived from the sites on p38 that mediate binding to proteins such as MAPK kinases. Peptide 11R-p38I110 significantly inhibited the activation of p38. To evaluate the effects of 11R-p38I110 , porcine islets were incubated with 10 µmol/L 11R-p38I110 or a mutant form designated 11R-mp38I110 . After islet transplantation, blood glucose levels reached the normoglycemic range in 58.3% and 0% of diabetic mice treated with 11R-p38I110 or 11R-mp38I110 , respectively. These data suggest that 11R-p38I110 inhibited islet apoptosis and improved islet function. Peptide p38I110 is a noncompetitive inhibitor of ATP and targets a unique docking site. Therefore, 11R-p38I110 specifically inhibits p38 activation, which may avoid the adverse effects that have discouraged the clinical use of small-molecule inhibitors of p38. Moreover, our methodology to design "peptide inhibitors" could be used to design other inhibitors derived from the binding sites of proteins.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
10
|
Noguchi H. Regulation of c-Jun NH 2-Terminal Kinase for Islet Transplantation. J Clin Med 2019; 8:jcm8111763. [PMID: 31652814 PMCID: PMC6912371 DOI: 10.3390/jcm8111763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Islet transplantation has been demonstrated to provide superior glycemic control with reduced glucose lability and hypoglycemic events compared with standard insulin therapy. However, the insulin independence rate after islet transplantation from one donor pancreas has remained low. The low frequency of islet grafting is dependent on poor islet recovery from donors and early islet loss during the first hours following grafting. The reduction in islet mass during pancreas preservation, islet isolation, and islet transplantation leads to β-cell death by apoptosis and the prerecruitment of intracellular death signaling pathways, such as c-Jun NH2-terminal kinase (JNK), which is one of the stress groups of mitogen-activated protein kinases (MAPKs). In this review, we show some of the most recent contributions to the advancement of knowledge of the JNK pathway and several possibilities for the treatment of diabetes using JNK inhibitors.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| |
Collapse
|
11
|
Excellent Islet Yields after 18-h Porcine Pancreas Preservation by Ductal Injection, Pancreas Preservation with MK Solution, Bottle Purification, and Islet Purification Using Iodixanol with UW Solution and Iodixanol with MK Solution. J Clin Med 2019; 8:jcm8101561. [PMID: 31574895 PMCID: PMC6832492 DOI: 10.3390/jcm8101561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
Successful islet isolation is the key to successful islet transplantation. Our group recently modified the islet isolation protocol to include pancreatic ductal injection of the preservation solution, pancreas storage in modified extracellular-type trehalose-containing Kyoto (MK) solution, and use of an iodixanol-based purification solution and bottle purification. In this study, we applied these methods to porcine islet isolation after 18-h pancreas preservation and compared two solutions with different compositions in bottle purification. Islet yield before purification was 651,661 ± 157,719 islet equivalents (IE) and 5576 ± 1538 IE/g pancreas weight. An IU solution was made by adding iodixanol to University of Wisconsin solution and an IK solution was made by adding iodixanol to MK solution. The efficacy of the two solutions for islet isolation was compared. There were no significant differences between the two purification methods with regard to islet yield, survival rate, purity, score, or stimulation index. These results indicate that our isolation protocol produces efficient islet yields from prolonged cold-stored pancreas and that IU and IK solutions are equally useful for islet purification.
Collapse
|