1
|
Fistrek Prlic M, Vukovic Brinar I, Kos J, Dika Z, Ivandic E, Fucek M, Jelakovic B. Serum Hepatocyte Growth Factor Concentration Correlates with Albuminuria in Individuals with Optimal Blood Pressure and Untreated Arterial Hypertension. Biomedicines 2024; 12:2233. [PMID: 39457546 PMCID: PMC11505527 DOI: 10.3390/biomedicines12102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Hepatocyte growth factor (HGF) is a protective factor against acute renal injury and chronic renal fibrosis. A positive correlation between HGF and blood pressure (BP) has been established. This study aimed to determine the association between serum HGF concentration and albuminuria in subjects with optimal blood pressure (OBP) and untreated arterial hypertension (UAH), as well as its association with BP levels, serum glucose levels, and inflammatory markers. Methods: Data from 563 subjects were analyzed. Albuminuria was normalized to urine creatinine and expressed as the albumin/creatinine ratio (ACR). HGF, serum glucose, C-reactive protein, and blood leucocyte counts were measured. BP was measured and subjects were divided into optimal blood pressure (BP < 120/80 mmHg, N = 295) and untreated arterial hypertension (BP > 140/90 mmHg, N = 268) groups. Results: The subjects with UAH were significantly older and had higher values of body mass index, waist circumference, serum total and LDL cholesterol levels, triglyceride levels, fasting glucose levels, and ACR (all p < 0.001). A significant positive correlation was found between serum HGF concentration and ACR in both groups. There was no difference or correlation between HGF and BP or inflammatory markers in either group. The multivariate regression analysis identified serum HGF concentration as a strong predictor of ACR increase (Beta = 0.376, p < 0.001). Conclusion: This study found that serum HGF concentration is associated with albuminuria not only in individuals with untreated arterial hypertension, but also in those with optimal blood pressure. The results suggest that serum HGF is an independent predictor of ACR increase in both groups.
Collapse
Affiliation(s)
- Margareta Fistrek Prlic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Ivana Vukovic Brinar
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| | - Jelena Kos
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Zivka Dika
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| | - Ema Ivandic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Mirjana Fucek
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Bojan Jelakovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| |
Collapse
|
2
|
Vincenti F, Bromberg J, Kim J, Faravardeh A, Leca N, Alperovich G, Csomor PA, Aslam S, Neylan J. The hepatocyte growth factor mimetic, ANG-3777, in kidney transplant recipients with delayed graft function: Results from a randomized phase 3 trial. Am J Transplant 2024; 24:1644-1651. [PMID: 38387622 DOI: 10.1016/j.ajt.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
In kidney transplant recipients, delayed graft function increases the risk of graft failure and mortality. In a phase 3, randomized, double-blind, placebo-controlled trial, we investigated the hepatocyte growth factor mimetic, ANG-3777 (once daily for 3 consecutive days, starting ≤30 hours posttransplant), in 248 patients receiving a first kidney transplant from a deceased donor. At day 360, estimated glomerular filtration rate (primary endpoint) was not significantly different between the ANG-3777 and placebo groups. There were no significant between-group differences in the duration of dialysis through day 30 or in the percentage of patients with an estimated glomerular filtration rate of >30 mL/min/1.73 m2 at day 360. The incidence of both delayed graft function and acute rejection was similar between ANG-3777 and placebo groups (68.5% vs 69.4% and 8.1% vs 6.5%, respectively). ANG-3777 was well tolerated, and there was a numerically lower incidence of graft failure versus placebo (3.2% vs 8.1%). Although there is insufficient evidence to support an indication of ANG-3777 for patients at risk of renal dysfunction after deceased-donor kidney transplantation, these findings indicate potential biological activity that may warrant further investigation.
Collapse
Affiliation(s)
- Flavio Vincenti
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.
| | - Jonathan Bromberg
- Division of Transplant Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jim Kim
- Department of Surgery, University of Southern California, Los Angeles, California, USA
| | - Arman Faravardeh
- Sharp HealthCare Kidney and Pancreas Transplant Center, San Diego, California, USA
| | - Nicolae Leca
- Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
3
|
Dery KJ, Yao S, Cheng B, Kupiec-Weglinski JW. New therapeutic concepts against ischemia-reperfusion injury in organ transplantation. Expert Rev Clin Immunol 2023; 19:1205-1224. [PMID: 37489289 PMCID: PMC10529400 DOI: 10.1080/1744666x.2023.2240516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) involves a positive amplification feedback loop that stimulates innate immune-driven tissue damage associated with organ procurement from deceased donors and during transplantation surgery. As our appreciation of its basic immune mechanisms has improved in recent years, translating putative biomarkers into therapeutic interventions in clinical transplantation remains challenging. AREAS COVERED This review presents advances in translational/clinical studies targeting immune responses to reactive oxygen species in IRI-stressed solid organ transplants, especially livers. Here we focus on novel concepts to rejuvenate suboptimal donor organs and improve transplant function using pharmacologic and machine perfusion (MP) strategies. Cellular damage induced by cold ischemia/warm reperfusion and the latest mechanistic insights into the microenvironment's role that leads to reperfusion-induced sterile inflammation is critically discussed. EXPERT OPINION Efforts to improve clinical outcomes and increase the donor organ pool will depend on improving donor management and our better appreciation of the complex mechanisms encompassing organ IRI that govern the innate-adaptive immune interface triggered in the peritransplant period and subsequent allo-Ag challenge. Computational techniques and deep machine learning incorporating the vast cellular and molecular mechanisms will predict which peri-transplant signals and immune interactions are essential for improving access to the long-term function of life-saving transplants.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siyuan Yao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol 2023; 19:401-417. [PMID: 36823168 DOI: 10.1038/s41581-023-00683-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is common in critically ill patients and is strongly associated with adverse outcomes, including an increased risk of chronic kidney disease, cardiovascular events and death. The pathophysiology of SA-AKI remains elusive, although microcirculatory dysfunction, cellular metabolic reprogramming and dysregulated inflammatory responses have been implicated in preclinical studies. SA-AKI is best defined as the occurrence of AKI within 7 days of sepsis onset (diagnosed according to Kidney Disease Improving Global Outcome criteria and Sepsis 3 criteria, respectively). Improving outcomes in SA-AKI is challenging, as patients can present with either clinical or subclinical AKI. Early identification of patients at risk of AKI, or at risk of progressing to severe and/or persistent AKI, is crucial to the timely initiation of adequate supportive measures, including limiting further insults to the kidney. Accordingly, the discovery of biomarkers associated with AKI that can aid in early diagnosis is an area of intensive investigation. Additionally, high-quality evidence on best-practice care of patients with AKI, sepsis and SA-AKI has continued to accrue. Although specific therapeutic options are limited, several clinical trials have evaluated the use of care bundles and extracorporeal techniques as potential therapeutic approaches. Here we provide graded recommendations for managing SA-AKI and highlight priorities for future research.
Collapse
|
5
|
Tang W, Zhang Y, Cui S, Yi F. The Growth Factors: Potential Biomarkers and Therapeutic Targets in Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:368-380. [PMID: 36466071 PMCID: PMC9710479 DOI: 10.1159/000526208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Kidney diseases are a prevalent health problem worldwide. Although substantial progress has been made in understanding the pathophysiology of kidney disease, currently there is no satisfactory clinical treatment available to prevent or treat kidney disease. Therefore, strategies to establish early diagnosis, identify the key molecules, and develop novel therapeutic interventions to slow the progression of kidney diseases and reduce their complications are encouraged. SUMMARY The growth factors play a crucial role in the development of kidney diseases. The altered levels of growth factors are usually detected in circulation and urine in the disease course. A growing body of studies has suggested that growth factors, receptors, and related regulators are promising biomarkers for the diagnosis and/or prognosis and potential therapeutic targets for the treatment of kidney diseases. In this review, we summarize recent advances in the potential applications of growth factors for diagnostic biomarkers and therapeutic targets in kidney diseases and highlight their performances in clinical trials. KEY MESSAGES Most diagnostic and therapeutic strategies targeting growth factors are still far from clinical implementation. The better understanding of growth factor-regulated pathophysiology and the progress of new intervention approaches are expected to facilitate the clinical translation of growth factor-based diagnosis and therapy of kidney diseases.
Collapse
Affiliation(s)
- Wei Tang
- Department of Pharmacology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yufeng Zhang
- Department of Pharmacology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Sijia Cui
- Department of Pharmacology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
6
|
Dery KJ, Kupiec-Weglinski JW. New insights into ischemia-reperfusion injury signaling pathways in organ transplantation. Curr Opin Organ Transplant 2022; 27:424-433. [PMID: 35857344 DOI: 10.1097/mot.0000000000001005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Ischemia-reperfusion injury (IRI) leading to allograft rejection in solid organ transplant recipients is a devastating event that compromises graft and patient survival. As our clinical knowledge regarding its definition and presentation has significantly improved over the last years, adequate biomarkers translating to important therapeutic intervention remains a challenge. This review will summarize recent findings in this area. RECENT FINDINGS In the past 18 months, our understanding of organ transplantation IRI has improved. IRI involves a positive amplification feedback loop encompassing damaged cells at the graft site, the activity of redox-sensitive damage-associated molecular patterns, and local sequestration of recipient-derived monocytes, lymphocytes and polymorphonuclear leukocytes, like neutrophils, to sustain the immunological cascade and to enhance the destruction of the foreign tissue. Recent studies have identified critical components leading to IRI, including the oxidation state of high mobility group box 1, a classic danger signal, its role in the Toll-like receptor 4-interleukin (IL)-23-IL-17A signaling axis, and the role of neutrophils and CD321, a marker for transmigration of circulating leukocytes into the inflamed tissue. In addition, recent findings imply that the protective functions mediated by autophagy activation counterbalance the detrimental nucleotide-binding domain-like receptor family, pyrin domain containing 3 inflammasome pathway. Finally, clinical studies reveal the posttransplant variables associated with early allograft dysfunction and IRI. SUMMARY The future challenge will be understanding how crosstalk at the molecular and cellular levels integrate prospectively to predict which peri-transplant signals are essential for long-term clinical outcomes.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
7
|
Carlson WD, Keck PC, Bosukonda D, Carlson FR. A Process for the Design and Development of Novel Bone Morphogenetic Protein-7 (BMP-7) Mimetics With an Example: THR-184. Front Pharmacol 2022; 13:864509. [PMID: 35873578 PMCID: PMC9306349 DOI: 10.3389/fphar.2022.864509] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Growth Factors have been evaluated as therapeutic targets for the treatment of a broad spectrum of diseases. Because they are proteins with pleiotropic effects, the quest to harness their beneficial effects has presented challenges. Most Growth Factors operate at the extracellular-receptor level and have natural feedback mechanisms that modulate their effects. As proteins, they are difficult and expensive to manufacture. Frequently proteins must be administered parenterally, may invoke an immune response, and may be neutralized by naturally occurring inhibitors. To circumvent these limitations, we have undertaken an effort to develop mimetics for the Bone Morphogenetic Protein (BMP) signaling pathway effects that incorporate the beneficial effects, eliminate the deleterious effects, and thereby create effective drug-like compounds.To this end, we have designed and tested a family of small peptide BMP mimetics. The design used the three-dimensional structure of BMP-7 to identify likely active surface regions. Lead sequences were then optimized based on in vitro assays that examine the selective binding to BMP receptors, demonstrate the phosphorylation of Smad-1,5,8, detect anti-apoptosis and anti-inflammation, and block the epithelial to mesenchymal transition (EMT) in renal tubular epithelial cells. These sequences were further optimized using in vivo assays of the attenuation of acute kidney injury in a rat-model of unilateral clamp ischemic reperfusion. This process uses a Structure Variance Analysis algorithm (SVA) to identify structure/activity relationships. One member of this family, THR-184, is an agonist of BMP signaling and a potent antagonist of TGFβ signaling. This small peptide mimetic inhibits inflammation, apoptosis, fibrosis and reverses epithelial to mesenchymal transition (EMT) by regulating multiple signaling pathways involved in the cellular injury of multiple organs. Its effects have been shown to control Acute Kidney Injury (AKI). THR-184 has progressed through phase I and II clinical trials for the prevention of Cardio-Vascular Surgery (CVS) associated AKI. This work provides a roadmap for the development of other growth factor mimetics and demonstrates how we might harness their therapeutic potential.
Collapse
Affiliation(s)
- William D. Carlson
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
- *Correspondence: William D. Carlson,
| | - Peter C. Keck
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
| | - Dattatreyamurty Bosukonda
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
| | - Frederic Roy Carlson
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
| |
Collapse
|
8
|
Salvadori M, Tsalouchos A. Innovative immunosuppression in kidney transplantation: A challenge for unmet needs. World J Transplant 2022; 12:27-41. [PMID: 35433332 PMCID: PMC8968476 DOI: 10.5500/wjt.v12.i3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the optimal results obtained in kidney transplantation and to the lack of interest of the industries, new innovative drugs in kidney transplantation are difficult to be encountered. The best strategy to find the new drugs recently developed or under development is to search in the sections of kidney transplantation still not completely covered by the drugs on the market. These unmet needs are the prevention of delayed graft function (DGF), the protection of the graft over the long time and the desensitization of preformed anti human leukocyte antigen antibodies and the treatment of the acute antibody-mediated rejection. These needs are particularly relevant due to the expansion of some kind of kidney transplantation as transplantation from non-heart beating donor and in the case of antibody-incompatible grafts. The first are particularly exposed to DGF, the latter need a safe desensitization and a safe treatments of the antibody mediated rejections that often occur. Particular caution is needed in treating these drugs. First, they are described in very recent studies and the follow-up of their effect is of course rather short. Second, some of these drugs are still in an early phase of study, even if in well-conducted randomized controlled trials. Particular caution and a careful check need to be used in trials launched 2 or 3 years ago. Indeed, is always necessary to verify whether the study is still going on or whether and why the study itself was abandoned.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Division of Nephrology, Santa Maria Annunziata Hospital, Florence 50012, Italy
| |
Collapse
|
9
|
Lai C, Yee SY, Ying T, Chadban S. Biomarkers as diagnostic tests for delayed graft function in kidney transplantation. Transpl Int 2021; 34:2431-2441. [PMID: 34626503 DOI: 10.1111/tri.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Delayed graft function (DGF) after kidney transplantation is associated with inferior outcomes and higher healthcare costs. DGF is currently defined as the requirement for dialysis within seven days post-transplant; however, this definition is subjective and nonspecific. Novel biomarkers have potential to improve objectivity and enable earlier diagnosis of DGF. We reviewed the literature to describe the range of novel biomarkers previously studied to predict DGF. We identified marked heterogeneity and low reporting quality of published studies. Among the novel biomarkers, serum NGAL had the greatest potential as a biomarker to predict DGF, but requires further assessment and validation through larger scale studies of diagnostic test performance. Given inadequacies in the dialysis-based definition, coupled with the high incidence and impact of DGF, such studies should be pursued.
Collapse
Affiliation(s)
- Christina Lai
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Seow Yeing Yee
- Nephrology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Tracey Ying
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Steve Chadban
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Mayne TJ, Nordyke RJ, Schold JD, Weir MR, Mohan S. Defining a minimal clinically meaningful difference in 12-month estimated glomerular filtration rate for clinical trials in deceased donor kidney transplantation. Clin Transplant 2021; 35:e14326. [PMID: 33896052 PMCID: PMC8365649 DOI: 10.1111/ctr.14326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND A Minimal Clinically Meaningful Difference (MCMD) has not been defined for Estimated glomerular filtration rate (eGFR). Our goal was to define the MCMD for eGFR anchored to kidney graft failure. METHODS A systematic review of studies with 12-month eGFR and subsequent renal graft failure was conducted. For observational studies, we calculated hazard ratio (HR) differences between adjacent eGFR intervals weighted by population distribution. Interventional trials yielded therapeutically induced changes in eGFR and failure risk. OPTN data analysis divided 12-month eGFR into bands for Cox regressions comparing adjacent eGFR bands with a death-censored graft survival outcome. RESULTS Observational studies indicated that lower eGFR was associated with increased death-censored graft failure risk; each 5 ml/min/1.73 m2 12-month eGFR band associated with a weighted incremental HR = 1.12 to 1.23. Clinical trial data found a 5 ml/min/1.73 m2 difference was associated with incremental HR = 1.16 to 1.35. OPTN analyses showed weighted mean HRs across 10, 7, and 5 ml/min/1.73 m2 bands of 1.47, 1.30, and 1.19. CONCLUSIONS A 5 ml/min/1.73 m2 difference in 12-month eGFR was consistently associated with ~20% increase in death-censored graft failure risk. The magnitude of effect has been interpreted as clinically meaningful in other disease states and should be considered the MCMD in renal transplantation clinical trials.
Collapse
Affiliation(s)
| | | | - Jesse D. Schold
- Department of Quantitative Health SciencesCleveland ClinicClevelandOhioUSA
| | - Matthew R. Weir
- Division of NephrologyDepartment of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Sumit Mohan
- Department of MedicineDivision of NephrologyVagelos College of Physicians & Surgeons and Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
11
|
Phase 3 trial Design of the Hepatocyte Growth Factor Mimetic ANG-3777 in Renal Transplant Recipients With Delayed Graft Function. Kidney Int Rep 2020; 6:296-303. [PMID: 33615054 PMCID: PMC7879201 DOI: 10.1016/j.ekir.2020.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
Introduction One-third of kidney transplantation patients experience acute kidney injury (AKI) resulting in delayed graft function (DGF), associated with increased risk of graft failure and mortality. Preclinical and phase 2 data indicate that treatment with ANG-3777 (formerly BB3), a hepatocyte growth factor (HGF) mimetic, may improve long-term kidney function and reduce health care resource use and cost, but these data require validation in a phase 3 randomized controlled trial. Methods The Graft Improvement Following Transplant (GIFT) trial is a multicenter, double-blind randomized controlled trial, designed to determine the efficacy and safety of ANG-3777 in renal transplantation patients showing signs of DGF. Subjects are randomized 1:1 to ANG-3777 (2 mg/kg) administered intravenously once daily for 3 consecutive days starting within 30 hours after transplantation, or to placebo. Results The primary endpoint is estimated glomerular filtration rate (eGFR) at 12 months. Secondary endpoints include proportion of subjects with eGFR >30 at days 30, 90, 180, and 360; proportion of subjects whose graft function is slow, delayed, or primary nonfunction; length of hospitalization; and duration of dialysis through day 30. Adverse events are assessed throughout the study. Conclusion GIFT will generate data that are important to advancing treatment of DGF in this medically complex population.
Collapse
|
12
|
Hepatocyte Growth Factor Mimetic ANG-3777 for Cardiac Surgery-Associated Acute Kidney Injury. Kidney Int Rep 2020; 5:2325-2332. [PMID: 33305126 PMCID: PMC7710816 DOI: 10.1016/j.ekir.2020.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction Nearly one-third of patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB) experience cardiac surgery–associated (CSA) acute kidney injury (AKI); 5% require renal replacement therapy. ANG-3777 is a hepatocyte growth factor mimetic. In vitro, ANG-3777 reduces apoptosis and increases cell proliferation, migration, morphogenesis, and angiogenesis in injured kidneys. In animal models, ANG-3777 mitigates the effects of renal damage secondary to ischemia reperfusion injury and nephrotoxic chemicals. Phase 2 data in AKI of renal transplantation have shown improved renal function and comparable safety relative to placebo. The Guard Against Renal Damage (GUARD) study is a phase 2 proof of concept trial of ANG-3777 in CSA-AKI. Methods GUARD is a 240-patient, multicenter, double-blind, randomized placebo-controlled trial to assess the efficacy and safety of ANG-3777 in patients at elevated pre-surgery risk for AKI undergoing coronary artery bypass graft (CABG) or heart valve repair/replacement requiring CPB. Subjects are randomized 1:1 to receive ANG-3777 (2 mg/kg) or placebo. Study drug is dosed via 4 daily intravenous 30-minute infusions. The first dose is administered less than 4 hours after completing CPB, second at 24 ± 2 hours post-CPB, with two subsequent doses at 24 ± 2 hours after the previous dose. Results The primary efficacy endpoint is percent change from baseline serum creatinine to mean area under the curve from days 2 through 6. Secondary endpoints include change in estimated glomerular filtration rate from baseline to day 30, the proportion of patients diagnosed with AKI by stage through day 5, and the length of CSA-AKI hospitalization. Safety will include adverse events and laboratory measures. Conclusion This phase 2 study of ANG-3777 provides data to develop a phase 3 registrational study in this medically complex condition.
Collapse
|