1
|
Jatana S, Krys D, Verhoeff K, Kung JY, Jogiat U, Montano-Loza AJ, Shapiro AMJ, Dajani K, Anderson B, Bigam DL. Liver Allograft Cirrhosis, Retransplant, and Mortality Secondary to Recurrent Disease After Transplant for MASH: A Systematic Review and Meta-analysis. Transplantation 2024:00007890-990000000-00954. [PMID: 39658843 DOI: 10.1097/tp.0000000000005276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND Recurrent disease after liver transplant is well recognized for many diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) are leading indications for liver transplant, and there is scarce knowledge about recurrence-related end outcomes such as retransplant and mortality. This project aims to assess the proportion of patients transplanted for MASH who develop recurrent disease and adverse clinical outcomes. METHODS A systematic review and pooled proportions meta-analysis was performed by searching the following databases: MEDLINE, Embase, Scopus, Web of Science Core Collection, and Cochrane Library. Inclusion criteria were studies discussing adult patients with liver transplants secondary to MASH or presumed MASH with recurrent disease-related outcomes. Outcomes were assessed in time frames from <6 mo to ≥5 y. RESULTS Of 5859 records, 40 were included (16 157 patients). Recurrent MASLD and MASH (28 studies each) occurred in frequencies of 35%-49% and 11%-24%, respectively. Fibrosis occurred in 4%-25% (13 studies). Recurrent disease-related cirrhosis (13 studies), graft failure (8 studies), and retransplant (9 studies) occurred in 0%-2%, 3%-9%, and 0%-1%, respectively. Recurrent disease-related hepatocellular carcinoma (1 study) and mortality (17 studies) both had a prevalence of 0%. Studies were of moderate or high quality using the Methodological Index for Non-Randomized Studies tool. CONCLUSIONS Recurrent MASLD and MASH after liver transplant occur frequently, but adverse clinical outcomes due to disease recurrence are infrequent, maybe due to insufficient data on long-term follow-up. Long-term outcomes after transplantation for MASLD appear favorable; however, identifying those more likely to have progressive recurrent disease leading to adverse clinical outcomes may allow for pre- and posttransplant interventions to improve outcomes further.
Collapse
Affiliation(s)
- Sukhdeep Jatana
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Daniel Krys
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Janice Y Kung
- Geoffrey and Robyn Sperber Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Uzair Jogiat
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta, Edmonton, AB, Canada
| | | | - Khaled Dajani
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Blaire Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - David L Bigam
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
de Weerd AE, Roelen DL, Betjes MG, Clahsen-van Groningen MC, Haasnoot GW, Kho MM, Reinders ME, Roodnat JI, Severs D, Karahan GE, van de Wetering J. Anti-HLA Class II Antibodies Are the Most Resistant to Desensitization in Crossmatch-positive Living-donor Kidney Transplantations: A Patient Series. Transplant Direct 2024; 10:e1695. [PMID: 39220218 PMCID: PMC11365629 DOI: 10.1097/txd.0000000000001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background In HLA-incompatible kidney transplantation, the efficacy of desensitization in terms of anti-HLA antibody kinetics is not well characterized. We present an overview of the course of anti-HLA antibodies throughout plasma exchange (PE) desensitization in a series of crossmatch-positive patients. Methods All consecutive candidates in the Dutch HLA-incompatible kidney transplantation program between November 2012 and January 2022 were included. The eligibility criteria were a positive crossmatch with a living kidney donor and no options for compatible transplantation. Desensitization consisted of 5-10 PE with low-dose IVIg. Results A total of 16 patient-donor pairs were included. Patients had median virtual panel-reactive antibody of 99.58%. Cumulative donor-specific anti-HLA antibody (cumDSA) mean fluorescence intensity (MFI) was 31 399 median, and immunodominant DSA (iDSA) MFI was 18 677 for class I and 21 893 for class II. Median anti-HLA antibody MFI response to desensitization was worse in class II as compared with class I (P < 0.001), particularly for HLA-DQ. Class I cumDSA MFI decreased 68% after 4 PE versus 53% in class II. The decrease between the fifth and the 10th PE sessions was modest with 21% in class I versus 9% in class II. Antibody-mediated rejection occurred in 85% of patients, with the iDSA directed to the same mismatched HLA as before desensitization, except for 3 patients, of whom 2 had vigorous rebound of antibodies to repeated mismatches (RMMs). Rebound was highest (86%) in RMM-DSA with prior grafts removed (transplantectomy n = 7), lower (39%) in non-RMM-DSA (n = 30), and lowest (11%) for RMM-DSA with in situ grafts (n = 5; P = 0.018 for RMM-DSA transplantectomy versus RMM-DSA graft in situ). With a median follow-up of 59 mo, 1 patient had died resulting in a death-censored graft survival of 73%. Conclusions Patients with class II DSA, and particularly those directed against HLA-DQ locus, were difficult to desensitize.
Collapse
Affiliation(s)
- Annelies E. de Weerd
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Dave L. Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel G.H. Betjes
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | | | - Geert W. Haasnoot
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcia M.L. Kho
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Marlies E.J. Reinders
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Joke I. Roodnat
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - David Severs
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Gonca E. Karahan
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacqueline van de Wetering
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Wellekens K, Coemans M, Callemeyn J, Cleenders E, Debyser T, De Pelsmaeker S, Emonds MP, Koshy P, Kuypers D, Pagliazzi A, Roufosse C, Senev A, Van Loon E, Vaulet T, Naesens M. Probable antibody-mediated rejection in kidney transplantation is a rare and challenging phenotype to define: Findings from a single-center study. Am J Transplant 2024:S1600-6135(24)00437-4. [PMID: 39029874 DOI: 10.1016/j.ajt.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The Banff 2022 consensus introduced probable antibody-mediated rejection (AMR), characterized by mild AMR histologic features and human leukocyte antigen (HLA) donor-specific antibody (DSA) positivity. In a single-center observational cohort study of 1891 kidney transplant recipients transplanted between 2004 and 2021, 566 kidney biopsies were performed in 178 individual HLA-DSA-positive transplants. Evaluated at time of the first HLA-DSA-positive biopsy of each transplant (N = 178), 84 of the 178 (47.2%) of first biopsies were scored as no AMR, 22 of the 178 (12.4%) as probable AMR, and 72 of the 178 (40.4%) as AMR. The majority (77.3%) of probable AMR cases were first diagnosed in indication biopsies. Probable AMR was associated with lower estimated glomerular filtration rate (mL/min/1.73m2) than no AMR (20.2 [8.3-32.3] vs 40.1 [25.4-53.3]; P = .001). The one-year risk of (repeat) AMR was similar for probable AMR and AMR (subdistribution hazard ratio (sHR), 0.99; 0.42-2.31; P = .97) and higher than after no AMR (sHR, 3.05; 1.07-8.73; P = .04). Probable AMR had a higher five-year risk of transplant glomerulopathy vs no AMR (sHR, 4.29; 0.92-19.98; P = 06), similar to AMR (sHR, 1.74; 0.43-7.04; P = .44). No significant differences in five-year risk of graft failure emerged between probable AMR and AMR (sHR, 1.14; 0.36-3.58; P = .82) or no AMR (sHR, 2.46; 0.78-7.74; P = .12). Probable AMR is a rare phenotype, however, sharing significant similarities with AMR in this single-center study. Future studies are needed to validate reproducible diagnostic criteria and associated clinical outcomes to allow for defining best management of this potentially relevant phenotype.
Collapse
Affiliation(s)
- Karolien Wellekens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Coemans
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Biostatistics and Statistical Bioinformatics Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jasper Callemeyn
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Evert Cleenders
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Biostatistics and Statistical Bioinformatics Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Tim Debyser
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Pelsmaeker
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Priyanka Koshy
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Angelica Pagliazzi
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Candice Roufosse
- Department of Immunology and Inflammation, Imperial College, London, UK
| | - Aleksandar Senev
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Elisabet Van Loon
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Thibaut Vaulet
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Balakrishnan S, Alexander MP, Schinstock C. Challenges and opportunities for designing clinical trials for antibody mediated rejection. FRONTIERS IN TRANSPLANTATION 2024; 3:1389005. [PMID: 38993760 PMCID: PMC11235363 DOI: 10.3389/frtra.2024.1389005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/25/2024] [Indexed: 07/13/2024]
Abstract
Significant progress has been made in kidney transplantation, with 1-year graft survival nearing 95%. However, long-term allograft survival remains suboptimal, with a 10-year overall graft survival rate of only 53.6% for deceased donor transplant recipients. Chronic active antibody-mediated rejection (ABMR) is a leading cause of death-censored graft loss, yet no therapy has demonstrated efficacy in large, randomized trials, despite substantial investment from pharmaceutical companies. Several clinical trials aimed to treat chronic ABMR in the past decade have yielded disappointing results or were prematurely terminated, attributed to factors including incomplete understanding of disease mechanisms, heterogeneous patient populations with comorbidities, slow disease progression, and limited patient numbers. This review aims to discuss opportunities for improving retrospective and prospective studies of ABMR, focusing on addressing heterogeneity, outcome measurement, and strategies to enhance patient enrollment to inform study design, data collection, and reporting.
Collapse
Affiliation(s)
- Suryanarayanan Balakrishnan
- Division of Hypertension and Nephrology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mariam P. Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Carrie Schinstock
- Division of Hypertension and Nephrology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
de Weerd AE, Roelen DL, van de Wetering J, Betjes MGH, Heidt S, Reinders MEJ. Imlifidase Desensitization in HLA-incompatible Kidney Transplantation: Finding the Sweet Spot. Transplantation 2024; 108:335-345. [PMID: 37340532 DOI: 10.1097/tp.0000000000004689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Imlifidase, derived from a Streptococcus pyogenes enzyme, cleaves the entire immunoglobulin G pool within hours after administration in fully cleaved antigen-binding and crystallizable fragments. These cleaved fragments can no longer exert their antibody-dependent cytotoxic functions, thereby creating a window to permit HLA-incompatible kidney transplantation. Imlifidase is labeled, in Europe only, for deceased donor kidney transplantation in highly sensitized patients, whose chances for an HLA-compatible transplant are negligible. This review discusses outcomes of preclinical and clinical studies on imlifidase and describes the phase III desensitization trials that are currently enrolling patients. A comparison is made with other desensitization methods. The review discusses the immunological work-up of imlifidase candidates and especially the "delisting strategy" of antigens that shift from unacceptable to acceptable with imlifidase desensitization. Other considerations for clinical implementation, such as adaptation of induction protocols, are also discussed. Imlifidase cleaves most of the currently used induction agents except for horse antithymocyte globulin, and rebound of donor-specific antibodies should be managed. Another consideration is the timing and interpretation of (virtual) crossmatches when bringing this novel desensitization agent into the clinic.
Collapse
Affiliation(s)
- Annelies E de Weerd
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center, Rotterdam, the Netherlands
| | - Dave L Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacqueline van de Wetering
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center, Rotterdam, the Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center, Rotterdam, the Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Naesens M, Roufosse C, Haas M, Lefaucheur C, Mannon RB, Adam BA, Aubert O, Böhmig GA, Callemeyn J, Groningen MCV, Cornell LD, Demetris AJ, Drachenberg CB, Einecke G, Fogo AB, Gibson IW, Halloran P, Hidalgo LG, Horsfield C, Huang E, Kikić Ž, Kozakowski N, Nankivell B, Rabant M, Randhawa P, Riella LV, Sapir-Pichhadze R, Schinstock C, Solez K, Tambur AR, Thaunat O, Wiebe C, Zielinski D, Colvin R, Loupy A, Mengel M. The Banff 2022 Kidney Meeting Report: Re-Appraisal of Microvascular Inflammation and the Role of Biopsy-Based Transcript Diagnostics. Am J Transplant 2023; 24:S1600-6135(23)00818-3. [PMID: 39491095 DOI: 10.1016/j.ajt.2023.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
The XVI-th Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from 19th-23rd September 2022, as a joint meeting with the Canadian Society of Transplantation. To mark the 30th anniversary of the first Banff Classification, pre-meeting discussions were held on the past, present, and future of the Banff Classification. This report is a summary of the meeting highlights that were most important in terms of their effect on the Classification, including discussions around microvascular inflammation and biopsy-based transcript analysis for diagnosis. In a post-meeting survey, agreement was reached on the delineation of the following phenotypes: (1) "Probable antibody-mediated rejection (AMR)", which represents DSA-positive cases with some histological features of AMR but below current thresholds for a definitive AMR diagnosis; and (2) "Microvascular inflammation (MVI), DSA-negative and C4d-negative", a phenotype of unclear cause requiring further study, which represents cases with MVI not explained by DSA. Although biopsy-based transcript diagnostics are considered promising and remain an integral part of the Banff Classification (limited to diagnosis of AMR), further work needs to be done to agree on the exact classifiers, thresholds, and clinical context of use.
Collapse
Affiliation(s)
- Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | - Candice Roufosse
- Department of Immunology and Inflammation, Faculty Medicine, Imperial College London, London, UK.
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Carmen Lefaucheur
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Nephrology and Transplantation, Saint-Louis Hospital, Paris, France
| | | | - Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Olivier Aubert
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marian Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, The Netherlands; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Lynn D Cornell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Gunilla Einecke
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ian W Gibson
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | - Philip Halloran
- Department of Medicine, Alberta Transplant Applied Genomics Centre, Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Luis G Hidalgo
- Department of Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Edmund Huang
- Department of Medicine, Division of Nephrology, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Željko Kikić
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | | | - Brian Nankivell
- Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Marion Rabant
- Pathology department, Necker-Enfants Malades Hospital, Paris, France
| | - Parmjeet Randhawa
- Pathology, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonardo V Riella
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruth Sapir-Pichhadze
- Division of Nephrology & Multi-Organ Transplant Program, McGill University, Montreal, Quebec, Canada
| | - Carrie Schinstock
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anat R Tambur
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Olivier Thaunat
- Department of Transplantation Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Chris Wiebe
- Department of Medicine and Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Dina Zielinski
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Robert Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandre Loupy
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
van den Broek DAJ, Meziyerh S, Budde K, Lefaucheur C, Cozzi E, Bertrand D, López del Moral C, Dorling A, Emonds MP, Naesens M, de Vries APJ. The Clinical Utility of Post-Transplant Monitoring of Donor-Specific Antibodies in Stable Renal Transplant Recipients: A Consensus Report With Guideline Statements for Clinical Practice. Transpl Int 2023; 36:11321. [PMID: 37560072 PMCID: PMC10408721 DOI: 10.3389/ti.2023.11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Solid phase immunoassays improved the detection and determination of the antigen-specificity of donor-specific antibodies (DSA) to human leukocyte antigens (HLA). The widespread use of SPI in kidney transplantation also introduced new clinical dilemmas, such as whether patients should be monitored for DSA pre- or post-transplantation. Pretransplant screening through SPI has become standard practice and DSA are readily determined in case of suspected rejection. However, DSA monitoring in recipients with stable graft function has not been universally established as standard of care. This may be related to uncertainty regarding the clinical utility of DSA monitoring as a screening tool. This consensus report aims to appraise the clinical utility of DSA monitoring in recipients without overt signs of graft dysfunction, using the Wilson & Junger criteria for assessing the validity of a screening practice. To assess the evidence on DSA monitoring, the European Society for Organ Transplantation (ESOT) convened a dedicated workgroup, comprised of experts in transplantation nephrology and immunology, to review relevant literature. Guidelines and statements were developed during a consensus conference by Delphi methodology that took place in person in November 2022 in Prague. The findings and recommendations of the workgroup on subclinical DSA monitoring are presented in this article.
Collapse
Affiliation(s)
- Dennis A. J. van den Broek
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Soufian Meziyerh
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Kidney Transplant Department, Saint Louis Hospital, Université de Paris Cité, Paris, France
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Dominique Bertrand
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, Rouen, France
| | - Covadonga López del Moral
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Anthony Dorling
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Aiko P. J. de Vries
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | | |
Collapse
|