1
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2024:00007890-990000000-00891. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4+ regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang W, Sen A, Pena JK, Reitsma A, Alexander OC, Tajima T, Martinez OM, Krams SM. Application of Mass Cytometry Platforms to Solid Organ Transplantation. Transplantation 2024; 108:2034-2044. [PMID: 38467594 PMCID: PMC11390974 DOI: 10.1097/tp.0000000000004925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Transplantation serves as the cornerstone of treatment for patients with end-stage organ disease. The prevalence of complications, such as allograft rejection, infection, and malignancies, underscores the need to dissect the complex interactions of the immune system at the single-cell level. In this review, we discuss studies using mass cytometry or cytometry by time-of-flight, a cutting-edge technology enabling the characterization of immune populations and cell-to-cell interactions in granular detail. We review the application of mass cytometry in human and experimental animal studies in the context of transplantation, uncovering invaluable contributions of the tool to understanding rejection and other transplant-related complications. We discuss recent innovations that have the potential to streamline and standardize mass cytometry workflows for application to multisite clinical trials. Additionally, we introduce imaging mass cytometry, a technique that couples the power of mass cytometry with spatial context, thereby mapping cellular interactions within tissue microenvironments. The synergistic integration of mass cytometry and imaging mass cytometry data with other omics data sets and high-dimensional data platforms to further define immune dynamics is discussed. In conclusion, mass cytometry technologies, when integrated with other tools and data, shed light on the intricate landscape of the immune response in transplantation. This approach holds significant potential for enhancing patient outcomes by advancing our understanding and facilitating the development of new diagnostics and therapeutics.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Ayantika Sen
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Josselyn K. Pena
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Andrea Reitsma
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Oliver C. Alexander
- Department of Surgery, Stanford University, Stanford, CA, United States
- Meharry Medical College, School of Medicine, Nashville, TN, United States
| | - Tetsuya Tajima
- Department of Surgery, Stanford University, Stanford, CA, United States
| | | | - Sheri M. Krams
- Department of Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Cross A, Issa F. Unraveling Renal Transplant Rejection: How Can We Measure Intragraft Cell-Cell Interactions? Transplantation 2024:00007890-990000000-00824. [PMID: 39044324 DOI: 10.1097/tp.0000000000005136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Affiliation(s)
- Amy Cross
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
4
|
Hirai T, Kondo A, Shimizu T, Fukuda H, Tokita D, Takagi T, Mayer AT, Ishida H. Unveiling Spatial Immune Cell Profile in Kidney Allograft Rejections Using 36-plex Immunofluorescence Imaging. Transplantation 2024:00007890-990000000-00800. [PMID: 38913785 DOI: 10.1097/tp.0000000000005107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Kidney allograft rejections are orchestrated by a variety of immune cells. Because of the complex histopathologic features, accurate pathological diagnosis poses challenges even for expert pathologists. The objective of this study was to unveil novel spatial indices associated with transplant rejection by using a spatial bioinformatic approach using 36-plex immunofluorescence image data. METHODS The image obtained from 11 T cell-mediated rejection (TCMR) and 12 antibody-mediated rejection (AMR) samples were segmented into 753 737 single cells using DeepCell's Mesmer algorithm. These cells were categorized into 13 distinct cell types through unsupervised clustering based on their biomarker expression profiles. Cell neighborhood analysis allowed us to stratify kidney tissue into 8 distinct neighborhood components consisting of unique cell type enrichment profiles. RESULTS In contrast to TCMR samples, AMR samples exhibited a higher frequency of neighborhood components that were characterized by an enrichment of CD31+ endothelial cells. Although the overall frequency of CD68+ macrophages in AMR samples was not significantly high, CD68+ macrophages within endothelial cell-rich lesions exhibited a significantly higher frequency in AMR samples than TCMR samples. Furthermore, the frequency of interactions between CD31+ cells and CD68+ cells was significantly increased in AMR samples, implying the pivotal role of macrophages in AMR pathogenesis. Importantly, patients demonstrating a high frequency of CD31:CD68 interactions experienced significantly poorer outcomes in terms of chronic AMR progression. CONCLUSIONS Collectively, these data indicate the potential of spatial bioinformatic as a valuable tool for aiding in pathological diagnosis and for uncovering new insights into the mechanisms underlying transplant rejection.
Collapse
Affiliation(s)
- Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | | | - Tomokazu Shimizu
- Division of Organ Transplant Management, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Daisuke Tokita
- Department of Urology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | | | - Hideki Ishida
- Division of Organ Transplant Management, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
5
|
Yang L, Li Y, Li X, Lu H, Wang Y, Meng H, Ren Y, Lan J. Effect of interactions between humic acid and cerium oxide nanoparticles on the toxicity to the Chlorella sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38274-38287. [PMID: 38802614 DOI: 10.1007/s11356-024-33762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
With the wide application of nanomaterials, the concentration of nanomaterials in natural water continues to increase, which poses a severe threat to the water environment. However, the influence of organic matter and nanomaterials rich in natural water on the toxic effect of algae growth is still unclear. In this study, the effects of humic acid (HA) and nano-cerium oxide (nCeO2) on the physiology and transcriptome of Chlorella sp. were analyzed, and the mechanism of the toxic effect of HA on Chlorella sp. under nCeO2 stress was revealed. Under 20-200 mg/L nCeO2 stress, the growth of Chlorella cells was inhibited and the highest inhibition rate reached 52% within 200 mg/L nCeO2. The Fv/Fm and ETRmax values of Chlorella sp. decreased from 0.490 and 24.45 (20 mg/L nCeO2) to 0.488 and 23.4 (100 mg/L nCeO2), respectively. Under the stimulation of nCeO2, the level of reactive oxygen species in algal cells was increased, accompanied by lipid peroxidation and membrane damage. However, the addition of HA at concentrations of 5-10 mg/L effectively alleviated the toxic effect of nCeO2 on Chlorella sp. Transcriptome analysis showed that 10 mg/L HA could alleviate the cellular stress at 100 mg/L nCeO2 on Chlorella sp. by regulating genes related to photosynthesis and metabolism pathways. Moreover, the downregulation of genes (e.g., Lhca1, Lhcb1, AOC3, and AOC2) indicated that HA reduced the level of oxidative stress in Chlorella sp. These findings offer novel insights of evaluating the ecotoxicity nCeO2 and HA in natural water environment and their impact on Chlorella sp.
Collapse
Affiliation(s)
- Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yucai Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaotong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Haoqi Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuchao Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongyan Meng
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|