1
|
Révész C, Wasik AA, Godó M, Tod P, Lehtonen S, Szénási G, Hamar P. Cold Saline Perfusion before Ischemia-Reperfusion Is Harmful to the Kidney and Is Associated with the Loss of Ezrin, a Cytoskeletal Protein, in Rats. Biomedicines 2021; 9:biomedicines9010030. [PMID: 33401597 PMCID: PMC7824567 DOI: 10.3390/biomedicines9010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Organ protection for transplantation is perfusion with ice-cold preservation solutions, although saline is also used in animal experiments and living donor transplantations. However, ice-cold perfusion can contribute to initial graft injury. Our aim was to test if cytoskeletal damage of parenchymal cells is caused by saline itself or by the ice-cold solution. Methods: F344 rat kidneys were flushed with cold (4 °C) saline, ischemic and sham kidneys were not perfused. In a separate set, F344 kidneys were flushed with saline or preservation solution at 4 or 15 °C. Ischemia time was 30 min. Results: Renal injury was significantly more severe following cold ischemia (CI) than after ischemia-reperfusion without flushing (ischemia/reperfusion (I/R)). Functional and morphologic damage was accompanied by severe loss of ezrin from glomerular and tubular epithelial cells after CI. Moreover, saline caused serious injury independently from its temperature, while the perfusion solution was more beneficial, especially at 4 °C. Conclusions: Flushing the kidney with ice-cold saline can cause more severe injury than ischemia-reperfusion at body temperature even during a short (30 min) ischemia. Saline perfusion can prolong recovery from ischemia in kidney transplantation, which can be prevented by using preservation solutions.
Collapse
Affiliation(s)
- Csaba Révész
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Anita A. Wasik
- Department of Pathology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.A.W.); (S.L.)
| | - Mária Godó
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Pál Tod
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Sanna Lehtonen
- Department of Pathology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.A.W.); (S.L.)
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Gábor Szénási
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Péter Hamar
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
- Correspondence: ; Tel.: +36-20-825-9751; Fax: +36-1-210-0100
| |
Collapse
|
2
|
Haberal M, Kirnap M, Erdem SR, Ozdemir BH, Lux KM, Bacanli D. Evaluation of New Baskent University Preservation Solution for Kidney Graft During Cold Ischemia: Preliminary Experimental Animal Study. EXP CLIN TRANSPLANT 2020; 17:287-297. [PMID: 31145052 DOI: 10.6002/ect.bups2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Organ damage due to long cold ischemia time remains a hurdle in transplantation. In this preliminary animal study, we compared the new Baskent University Preservation Solution (BUPS) with the University of Wisconsin (UW) and histidine-tryptophan-ketoglutarate (HTK) solutions. MATERIALS AND METHODS BUPS composition included electrolytes, raffinose, mannitol, N-acetylcysteine, taurine, adenosine, and ascorbic acid. In experiment 1, kidneys from 50 male Sprague-Dawley rats were placed into BUPS, HTK, or UW solution to assess cold ischemia injury, with biopsies taken at different time points for pathologic evaluation. In experiment 2, to investigate ischemia-reperfusion injury, 5 rats were renal transplant donors to 10 rats and 6 pigs were used as transplant donors-recipients among each other. RESULTS In experiment 1, no significant cellular injury was shown at up to 3 hours of perfusion with any solution. At 6- to 48-hour perfusion, tubular injury was shown, with lowest injury in BUPS and HTK versus UW and control groups (P < .01). The BUPS group showed more moderate degree of tubular apoptosis and cytoskeletal rearrangement than the HTK and UW groups at 12-, 24-, and 48-hour perfusion (P < .01). In experiment 2, after ischemia-reperfusion injury, no significant differences were found between HTK and BUPS groups regarding tubular damage. Although no significant differences were shown regarding tubular cytoskeletal rearrangment and apoptosis in pig reperfusion group with BUPS versus HTK, significant differences were shown with these solutions in other groups. CONCLUSIONS Tubular damage during ischemia-reperfusion injury (cytoskeletal disruption, increased apoptosis) were lower with BUPS. BUPS can be a cost-effective perfusion solution in transplantation.
Collapse
Affiliation(s)
- Mehmet Haberal
- Department of General Surgery, Division of Transplantation, Baskent University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
3
|
Gonsalez SR, Cortês AL, Silva RCD, Lowe J, Prieto MC, Silva Lara LD. Acute kidney injury overview: From basic findings to new prevention and therapy strategies. Pharmacol Ther 2019; 200:1-12. [PMID: 30959059 PMCID: PMC10134404 DOI: 10.1016/j.pharmthera.2019.04.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/27/2019] [Indexed: 01/24/2023]
Abstract
Acute kidney injury (AKI) is defined as a decrease in kidney function within hours, which encompasses both injury and impairment of renal function. AKI is not considered a pathological condition of single organ failure, but a syndrome in which the kidney plays an active role in the progression of multi-organ dysfunction. The incidence rate of AKI is increasing and becoming a common (8-16% of hospital admissions) and serious disease (four-fold increased hospital mortality) affecting public health costs worldwide. AKI also affects the young and previously healthy individuals affected by infectious diseases in Latin America. Because of the multifactorial pathophysiological mechanisms, there is no effective pharmacological therapy that prevents the evolution or reverses the injury once established; therefore, renal replacement therapy is the only current alternative available for renal patients. The awareness of an accurate and prompt recognition of AKI underlying the various clinical phenotypes is an urgent need for more effective therapeutic interventions to diminish mortality and socio-economic impacts of AKI. The use of biomarkers as an indicator of the initial stage of the disease is critical and the cornerstone to fulfill the gaps in the field. This review discusses emerging strategies from basic science toward the anticipation of features, treatment of AKI, and new treatments using pharmacological and stem cell therapies. We will also highlight bioartificial kidney studies, addressing the limitations of the development of this innovative technology.
Collapse
Affiliation(s)
- Sabrina Ribeiro Gonsalez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Aline Leal Cortês
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Raquel Costa da Silva
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jennifer Lowe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, sala I2-035, Rio de Janeiro, RJ 21941-902, Brazil
| | - Minolfa C Prieto
- Department of Physiology & Tulane Renal and Hypertension Center of Excellence, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Lucienne da Silva Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
4
|
Nemes B, Pető K, Németh N, Mester A, Magyar Z, Ghanem S, Sógor V, Tánczos B, Deák Á, Kállay M, Bidiga L, Frecska E. N,N-dimethyltryptamine Prevents Renal Ischemia-Reperfusion Injury in a Rat Model. Transplant Proc 2019; 51:1268-1275. [PMID: 31101212 DOI: 10.1016/j.transproceed.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ischemia reperfusion (I/R) injury remains one of the most challenging fields of organ transplantation. It is highly associated with the use of expanded criteria donors that might conclude to delayed graft function or early or late graft failure. OBJECTIVE To investigate the metabolic, microcirculatory parameters, and histologic changes under the effect of N,N-dimethyltryptamine (DMT) in a renal I/R model in rats. METHOD In 26 anesthetized rats both kidneys were exposed. In the control group (n = 6) no other intervention happened. In 20 other animals, the right renal vessels were ligated, and after 60 minutes the right kidney was removed. The left renal vessels were clamped for 60 minutes then released, followed by 120 minutes of reperfusion. In the I/R group (n = 10), there was no additive treatment, while in I/R + DMT group (n = 10) DMT was administered 15 minutes before ischemia. Blood samples were taken, laser Doppler measurement was performed, and both kidneys were evaluated histologically. RESULTS Microcirculation (blood flux units [BFU]) diminished in all groups, but remarkably so in the I/R + DMT group. This group compensated better after the 30th minute of reperfusion. The control and I/R + DMT groups had similar BFUs after 120 minutes of reperfusion, but in the I/R group BFU was higher. Tubular necrosis developed in the I/R and I/R + DMT groups too; it was moderated under DMT effect, and severe without. Histologic injuries were less in I/R + DMT Group compared to non-treated animals. CONCLUSION Histologic changes characteristic to I/R injuries were reversible and microcirculation recovered at the end of 120 minutes reperfusion under the administration of DMT. DMT can be used for renoprotection in kidney transplantation.
Collapse
Affiliation(s)
- Balázs Nemes
- Department of Organ Transplantation, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Katalin Pető
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Németh
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Mester
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Magyar
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Souleiman Ghanem
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Sógor
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tánczos
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Deák
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márk Kállay
- Department of Organ Transplantation, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bidiga
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Impact of Hypothermia and Oxygen Deprivation on the Cytoskeleton in Organ Preservation Models. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8926724. [PMID: 30105258 PMCID: PMC6076979 DOI: 10.1155/2018/8926724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/05/2018] [Accepted: 06/21/2018] [Indexed: 01/22/2023]
Abstract
Ischemia reperfusion (IR) lesions are an unavoidable consequence of organ transplantation. Researching new therapeutics against these lesions requires the definition of early mechanisms. The cytoskeleton is composed of 3 types of filaments: microfilaments, intermediate filaments, and microtubules. We aimed to characterize the influence of preservation on their phenotype. In an in vitro model using primary human endothelial cells reproducing the conditions of organ preservation, two aspects were explored: (a) the impact of IR and cold ischemia time on each filament type, evaluating the roles of temperature, solution, and oxygen; and (b) the potential of cytoskeleton-mediated therapy to alleviate cell death. Results showed that intermediary filaments were unaffected, while microfilaments showed radical changes with disappearance of the structure replaced by a disorganized array of nodules; moreover, microtubules almost completely disappeared with time. Furthermore, temperature, and not oxygen deprivation or the solution, was the determining factor of the cytoskeleton's loss of integrity during preservation. Finally, pharmaceutical intervention could indeed preserve fiber structure but did not alter survival. Our work shows that improvement of preservation must include a more adapted temperature before considering oxygen, as it could profoundly improve cytoskeleton organization and thus cell fate. This highlights the importance of this structure for the development of new therapeutics and the definition of graft quality biomarkers.
Collapse
|
6
|
Ou J, Ball JM, Luan Y, Zhao T, Miyagishima KJ, Xu Y, Zhou H, Chen J, Merriman DK, Xie Z, Mallon BS, Li W. iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell 2018; 173:851-863.e16. [PMID: 29576452 DOI: 10.1016/j.cell.2018.03.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/12/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022]
Abstract
Hibernating mammals survive hypothermia (<10°C) without injury, a remarkable feat of cellular preservation that bears significance for potential medical applications. However, mechanisms imparting cold resistance, such as cytoskeleton stability, remain elusive. Using the first iPSC line from a hibernating mammal (13-lined ground squirrel), we uncovered cellular pathways critical for cold tolerance. Comparison between human and ground squirrel iPSC-derived neurons revealed differential mitochondrial and protein quality control responses to cold. In human iPSC-neurons, cold triggered mitochondrial stress, resulting in reactive oxygen species overproduction and lysosomal membrane permeabilization, contributing to microtubule destruction. Manipulations of these pathways endowed microtubule cold stability upon human iPSC-neurons and rat (a non-hibernator) retina, preserving its light responsiveness after prolonged cold exposure. Furthermore, these treatments significantly improved microtubule integrity in cold-stored kidneys, demonstrating the potential for prolonging shelf-life of organ transplants. Thus, ground squirrel iPSCs offer a unique platform for bringing cold-adaptive strategies from hibernators to humans in clinical applications. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jingxing Ou
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John M Ball
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yizhao Luan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tantai Zhao
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Ophthalmology, The Second Xiang-Ya Hospital, Central South University, Changsha 410011, China
| | - Kiyoharu J Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yufeng Xu
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Huizhi Zhou
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinguo Chen
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dana K Merriman
- Department of Biology, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Barbara S Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Sandal S, Bansal P, Cantarovich M. The evidence and rationale for the perioperative use of loop diuretics during kidney transplantation: A comprehensive review. Transplant Rev (Orlando) 2017; 32:92-101. [PMID: 29242033 DOI: 10.1016/j.trre.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/08/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Loop diuretics (LD) attenuate ischemic injury in nephrons. They are thought to decrease delayed graft function (DGF) during kidney transplantation (KT). This review aimed to summarize the current evidence for the perioperative use of LD during KT. METHODS We performed an analysis of all articles that were published since the inception of Medline and Embase: 26 studies were selected for inclusion. Scope was LD use during the perioperative phase of KT only. RESULTS Six animal studies demonstrated mixed results in terms of renal function and survival. Of the 20 studies performed in humans, 4 were randomized clinical trials. The risk of bias was mostly unclear. Evidence supporting the role of LD to increase diuresis was mixed and to prevent DGF was weak. There was poor evidence to support LD use to improve initial and long-term graft function. No data on patient survival could be found. Overall, there was a lack of any robust clinical evidence for LD use perioperatively during KT. IMPLICATIONS There is poor evidence to support the perioperative use of LD during KT. Well-designed trials are needed to further explore their safety and efficacy, and we summarize several rationales. Pragmatic rationales include volume management. There is evidence to suggest that LD have a vasodilatory effect, and decrease edema, congestion and oxygen requirements. Lastly, there are several theoretical rationales to explore LD use during KT, in particular, attenuating ischemia-reperfusion injury and modulating autophagy.
Collapse
Affiliation(s)
- Shaifali Sandal
- Division of Nephrology and Multi-Organ Transplant Program, McGill University Health Centre, 1001 boul. Decarie, Montreal, QC, Canada. H4A 3J1.
| | - Pannya Bansal
- Michigan State University College of Osteopathic Medicine, East Fee Hall, 965 Fee Rd, East Lansing, MI 48825, USA
| | - Marcelo Cantarovich
- Division of Nephrology and Multi-Organ Transplant Program, McGill University Health Centre, 1001 boul. Decarie, Montreal, QC, Canada. H4A 3J1
| |
Collapse
|
8
|
Limkemann A, Lindell SL, Reichstetter H, Plant V, Parrish D, Ramos C, Kowalski C, Quintini C, Mangino MJ. Donor gluconate rescues livers from uncontrolled donation after cardiac death. Surgery 2015; 159:852-61. [PMID: 26619928 DOI: 10.1016/j.surg.2015.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/02/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Ischemia from organ preservation or donation causes cells and tissues to swell owing to loss of energy-dependent mechanisms of control of cell volume. These volume changes cause substantial preservation injury, because preventing these changes by adding cell impermeants to preservation solutions decreases preservation injury. The objective of this study was to assess if this effect could be realized early in uncontrolled donation after cardiac death (DCD) livers by systemically loading donors with gluconate immediately after death to prevent accelerated swelling injury during the warm ischemia period before liver retrieval. METHODS Uncontrolled DCD rat livers were cold-stored in University of Wisconsin solution for 24 hours and reperfused on an isolated perfused liver (IPL) device for 2 hours or transplanted into a rat as an allograft for 7 days. Donors were pretreated with a solution of the impermeant gluconate or a saline control immediately after cardiac death. Livers were retrieved after 30 minutes. RESULTS In vivo, gluconate infusion in donors immediately before or after cardiac death prevented DCD-induced increases in total tissue water, decreased vascular resistance, increased oxygen consumption and synthesis of adenosine triphosphate, increased bile production, decreased lactate dehydrogenase release, and decreased histology injury scores after reperfusion on the IPL relative to saline-treated DCD controls. In the transplant model, donor gluconate pretreatment significantly decreased both alanine aminotransferase the first day after transplantation and total bilirubin the seventh day after transplantation. CONCLUSION Cell and tissue swelling plays a key role in preservation injury of uncontrolled DCD livers, which can be mitigated by early administration of gluconate solutions to the donor immediately after death.
Collapse
Affiliation(s)
- Ashley Limkemann
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Susanne L Lindell
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Heather Reichstetter
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Valerie Plant
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Dan Parrish
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Clementina Ramos
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Chris Kowalski
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | | | - Martin J Mangino
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA; Department of Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA; Department of Physiology and Biophysics, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA.
| |
Collapse
|
9
|
Short term ex vivo storage of kidneys cause progressive nuclear ploidy changes of renal tubular epitheliocytes. Sci Rep 2015; 5:10341. [PMID: 26036971 PMCID: PMC4453160 DOI: 10.1038/srep10341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/10/2015] [Indexed: 01/03/2023] Open
Abstract
In renal transplantation, there has been considerable success, mainly in term of post-transplant graft function. However, upon closer scrutiny, it is known that severe dysfunction, including persistence of renal failure is seen after transplantation. The major condition that potentially cause significant lesion may be hypothesized to be related to the hypothermic approach to storage. To systematically examine these issues, we stored mammalian (sheep) kidneys in UWS at 4 °C for four different time points (0, 1, 3 and 6 hours). We obtained renal histological sections and examined tubular architecture as well as nuclear characteristics of tubular epitheliocytes. The results of our preliminary investigations suggest that there are temporal changes of tubular epitheliocytes, as well as genomic changes. These changes were also seen in tissues stored at room temperature. Our observations suggest the need for additional studies for redesigning of improvised storage solutions. Pilot studies using Celsior also revealed similar kind of nuclear changes, suggesting that storage conditions are contributory, including perfusion versus static conditions. The results may explain persistence of tubular injury several days after orthotopic transplantation, and may potentially be contributory to delayed graft function (DGF).
Collapse
|
10
|
Hoyer DP, Gallinat A, Swoboda S, Wohlschläger J, Rauen U, Paul A, Minor T. Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transpl Int 2014; 27:1097-106. [PMID: 24963744 DOI: 10.1111/tri.12389] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 01/26/2023]
Abstract
Machine perfusion for preservation led to compelling success for the outcome of renal transplantation. Further refinements of methods to decrease preservation injury remain an issue of high interest. This study investigates functional and morphological aspects of kidneys preserved by subnormothermic (20 °C) machine perfusion (SNTM) compared with oxygenated hypothermic machine perfusion (HMPox) and cold storage (CS) in a donation after circulatory death (DCD) model. After 30 min of warm ischaemia, porcine kidneys were randomly assigned to preservation for 7 h by CS, HMPox or SNTM. Afterwards, kidneys were reperfused for 2 h with autologous blood in vitro for assessment of function and integrity. Application of SNTM for preservation led to significantly higher blood flow and urine output compared with both other groups. SNTM led to a twofold increased creatinine clearance compared with HMPox and 10-fold increased creatinine clearance compared with CS. Structural integrity was best preserved by SNTM. In conclusion, this is the first study on SNTM for kidneys from DCD donors. SNTM seems to be a promising preservation method with the potential to improve functional parameters of kidneys during reperfusion.
Collapse
Affiliation(s)
- Dieter P Hoyer
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Tian T, Lindell SL, Kowalski C, Mangino MJ. Moesin functionality in hypothermic liver preservation injury. Cryobiology 2014; 69:34-40. [PMID: 24836372 DOI: 10.1016/j.cryobiol.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 01/27/2023]
Abstract
The objective of this study was to determine how expression and functionality of the cytoskeletal linker protein moesin is involved in hepatic hypothermic preservation injury. Mouse livers were cold stored in University of Wisconsin (UW) solution and reperfused on an isolated perfused liver (IPL) device for one hour. Human hepatocytes (HepG2) and human or murine sinusoidal endothelial cells (SECs) were cold stored and rewarmed to induce hypothermic preservation injury. The cells were transfected with: wild type moesin, an siRNA duplex specific for moesin, and the moesin mutants T558D and T558A. Tissue and cell moesin expression and its binding to actin were determined by Western blot. Liver IPL functional outcomes deteriorated proportional to the length of cold storage, which correlated with moesin disassociation from the actin cytoskeleton. Cell viability (LDH and WST-8) in the cell models progressively declined with increasing preservation time, which also correlated with moesin disassociation. Transfection of a moesin containing plasmid or an siRNA duplex specific for moesin into HepG2 cells resulted in increased and decreased moesin expression, respectively. Overexpression of moesin protected while moesin knock-down potentiated preservation injury in the HepG2 cell model. Hepatocytes expressing the T558A (inactive) and T558D (active) moesin binding mutants demonstrated significantly more and less preservation injury, respectively. Cold storage time dependently caused hepatocyte detachment from the matrix and cell death, which was prevented by the T558D active moesin mutation. In conclusion, moesin is causally involved in hypothermic liver cell preservation injury through control of its active binding molecular functionality.
Collapse
Affiliation(s)
- Tao Tian
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States
| | - Susanne L Lindell
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States
| | - Chris Kowalski
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States
| | - Martin J Mangino
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States; Department of Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States; Department of Physiology and Biophysics, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States.
| |
Collapse
|
12
|
Santos EBD, Koff WJ, Grezzana Filho TDJM, De Rossi SD, Treis L, Bona SR, Pêgas KL, Katz B, Meyer FS, Marroni NAP, Corso CO. Oxidative stress evaluation of ischemia and reperfusion in kidneys under various degrees of hypothermia in rats. Acta Cir Bras 2013; 28:568-73. [DOI: 10.1590/s0102-86502013000800003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/15/2013] [Indexed: 11/21/2022] Open
|
13
|
Tian T, Lindell SL, Lam M, Mangino MJ. Ezrin functionality and hypothermic preservation injury in LLC-PK1 cells. Cryobiology 2012; 65:60-7. [PMID: 22554620 DOI: 10.1016/j.cryobiol.2012.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 02/06/2012] [Accepted: 04/12/2012] [Indexed: 12/21/2022]
Abstract
Renal epithelial cells from donor kidneys are susceptible to hypothermic preservation injury, which is attenuated when they over express the cytoskeletal linker protein ezrin. This study was designed to characterize the mechanisms of this protection. Renal epithelial cell lines were created from LLC-PK1 cells, which expressed mutant forms of ezrin with site directed alterations in membrane binding functionality. The study used cells expressing wild type ezrin, T567A, and T567D ezrin point mutants. The A and D mutants have constitutively inactive and active membrane binding conformations, respectively. Cells were cold stored (4 °C) for 6-24 h and reperfused for 1h to simulate transplant preservation injury. Preservation injury was assessed by mitochondrial activity (WST-1) and LDH release. Cells expressing the active ezrin mutant (T567D) showed significantly less preservation injury compared to wild type or the inactive mutant (T567A), while ezrin-specific siRNA knockdown and the inactive mutant potentiated preservation injury. Ezrin was extracted and identified from purified mitochondria. Furthermore, isolated mitochondria specifically bound anti-ezrin antibodies, which were reversed with the addition of exogenous recombinant ezrin. Recombinant wild type ezrin significantly reduced the sensitivity of the mitochondrial permeability transition pore (mPTP) to calcium, suggesting ezrin may modify mitochondrial function. In conclusion, the cytoskeletal linker protein ezrin plays a significant role in hypothermic preservation injury in renal epithelia. The mechanisms appear dependent on the molecule's open configuration (traditional linker functionality) and possibly a novel mitochondrial specific role, which may include modulation of mPTP function or calcium sensitivity.
Collapse
Affiliation(s)
- Tao Tian
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
14
|
A comparison of hypothermic machine perfusion versus static cold storage in an experimental model of renal ischemia reperfusion injury. Transplantation 2010; 89:830-7. [PMID: 20098357 DOI: 10.1097/tp.0b013e3181cfa1d2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION There is increasing support for the use of hypothermic machine perfusion (HMP) in an attempt to reduce preservation injury. However, experimental evidence is needed to further examine the effects of HMP on renal ischemia reperfusion injury. METHODS Porcine kidneys were subjected to 10 min of warm ischemia followed by 18 hr of static cold storage with hyperosomolar citrate (HOC), histidine-tryptophan-ketoglutarate (HTK), or University of Wisconsin (UW) solutions or 18 hr HMP with Kidney Perfusion Solution using the Lifeport perfusion system. Renal function, oxidative damage, and morphology were assessed during 3 hr of reperfusion with autologous blood using an isolated organ perfusion system. RESULTS During reperfusion, intrarenal resistance was significantly lower in the HMP group compared with HOC and UW (area under the curve; HMP 3.8+/-1.7, HOC 9.1+/-4.3, UW 7.7+/-2.2, HTK 5.6+/-1.9 mm Hg/min; P=0.006), and creatinine clearance was significantly higher compared with the UW group (area under the curve creatinine clearance; HMP 9.8+/-7.3, HOC 2.2+/-1.7, UW 1.8+/-1.0, HTK 2.1+/-1.8 mL/min/100 g; P=0.004). Tubular function was significantly improved in the HMP group (P<0.05); however, levels of lipid peroxidation were significantly higher (P=0.005). CONCLUSION HMP demonstrated a reduced level of preservation injury compared with the static techniques resulting in improved renal and tubular function and less tubular cell inflammation during reperfusion.
Collapse
|
15
|
Protective effects of ezrin on cold storage preservation injury in the pig kidney proximal tubular epithelial cell line (LLC-PK1). Transplantation 2009; 87:1488-96. [PMID: 19461485 DOI: 10.1097/tp.0b013e3181a43f18] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Renal damage caused by cold preservation and warm reperfusion has been well documented and involves tissue edema, cell swelling, ATP depletion, calcium toxicity, and oxidative stress. However, more common proximal mechanisms have not been identified, which may limit the development of effective clinical treatment strategies. Previous work indicates that many cytoskeletal structures are affected by cold preservation and reperfusion, including membrane-rich ezrin-associated complexes. The aim of this study was to investigate whether the sublamellar cytoskeletal protein ezrin is causally involved in cold preservation injury in renal tubule epithelial cells. METHODS We created a stably transfected cell line (LLC-EZ) using the pig kidney proximal tubular epithelial cell line (LLC-PK1), which constitutively overexpresses wild-type ezrin. These cells were cold stored in University of Wisconsin Solution and reperfused in vitro to model renal tubule preservation injury, which was assessed by biochemical, metabolic, functional, and structural endpoints. RESULTS Overexpression of ezrin increased cell viability (lactate dehydrogenase release), mitochondrial activity (ATP synthesis, dehydrogenase activity, and inner mitochondrial membrane potential), and protected the structure of cell membrane microvilli and mitochondria after cold storage preservation injury. Reperfusion-induced apoptosis was also significantly reduced in LLC-EZ cells overexpressing ezrin. CONCLUSIONS Enhanced ezrin expression protects tubule epithelial cells from cold storage preservation injury, possibly by membrane or mitochondrial mechanisms.
Collapse
|
16
|
Abstract
Ischemia has been an inevitable event accompanying kidney transplantation. Ischemic changes start with brain death, which is associated with severe hemodynamic disturbances: increasing intracranial pressure results in bradycardia and decreased cardiac output; the Cushing reflex causes tachycardia and increased blood pressure; and after a short period of stabilization, systemic vascular resistance declines with hypotension leading to cardiac arrest. Free radical-mediated injury releases proinflammatory cytokines and activates innate immunity. It has been suggested that all of these changes-the early innate response and the ischemic tissue damage-play roles in the development of adaptive responses, which in turn may lead to an acute font of kidney rejection. Hypothermic kidney storage of various durations before transplantation add to ischemic tissue damage. The final stage of ischemic injury occurs during reperfusion. Reperfusion injury, the effector phase of ischemic injury, develops hours or days after the initial insult. Repair and regeneration processes occur together with cellular apoptosis, autophagy, and necrosis; the fate of the organ depends on whether cell death or regeneration prevails. The whole process has been described as the ischemia-reperfusion (I-R) injury. It has a profound influence on not only the early but also the late function of a transplanted kidney. Prevention of I-R injury should be started before organ recovery by donor pretreatment. The organ shortage has become one of the most important factors limiting extension of deceased donor kidney transplantation worldwide. It has caused increasing use of suboptimal deceased donors (high risk, extended criteria [ECD], marginal donors) and uncontrolled non-heart-beating (NHBD) donors. Kidneys from such donors are exposed to much greater ischemic damage before recovery and show reduced chances for proper early as well as long-term function. Storage of kidneys, especially those recovered from ECD (or NHBD) donors, should use machine perfusion.
Collapse
|