1
|
Wang D, Jin S, Liu H, Song X, Jin H, Song Y, Zhao H, Li L, Yan G. Celastrol alleviates atopic dermatitis by regulating Ezrin-mediated mitochondrial fission and fusion. J Cell Mol Med 2024; 28:e18375. [PMID: 39039796 PMCID: PMC11263467 DOI: 10.1111/jcmm.18375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 07/24/2024] Open
Abstract
Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1β, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.
Collapse
Affiliation(s)
- Dandan Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Shan Jin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of DermatologyAffiliated Hospital of Yanbian UniversityYanjiChina
| | - Hanye Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Xinyi Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Hongyu Jin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Hongwei Zhao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic DiseasesYanbian UniversityYanjiChina
- Department of Anatomy, Histology and EmbryologyYanbian University Medical CollegeYanjiChina
| |
Collapse
|
2
|
Ezrin immunoexpression in gastric cells of domestic cats infected with Helicobacter spp. Res Vet Sci 2023; 154:84-88. [PMID: 36512978 DOI: 10.1016/j.rvsc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate de immunoexpression of ezrin in gastric cells of domestic cats infected with Helicobacter spp. and with chronic gastritis. Twenty paraffin-embedded gastric samples were selected based on previous positive results for Helicobacter spp. in the Rapid Urease Test, Warthin-Starry staining and cytology. Haematoxylin-eosin stained sections was done to evaluate inflammatory cell infiltrates. Immunohistochemical analysis was done using anti-Helicobacter pylori and anti-Ezrin antibodies. The analysis of inflammatory infiltrates revealed 8/20 (40%) in score 0, 11/20 (55%) in score 1 and 1/20 (5%) in score 2. The labelling observed in the immunohistochemical analysis using anti-Helicobacter spp. antibody showed no samples with score 0; 4/20 (20%) with score 1; 7/20 35% with score 2 and 9/20 (45%) with score 3. Ezrin overexpression on the cytoplasm of parietal cells was revealed in 18 out of 20 samples (90%). Of these, 10 cases (45%) achieved the score 1; 6 cases (30%) the score 2 and 2 cases (10%) the score 3. On the surface and pit cells there was an increase in Ezrin immnoexpression in 12 out of the 20 samples (60%), of which 8 samples (40%) achieved the score 1 and 4 samples (20%) the score 2. No sample were classified in score 3. Statistically significant differences (p = 0.026) were observed between the inflammatory infiltrate in the gastric mucosa and the immunoexpression of Ezrin in the cytoplasm of parietal cells. It was concluded that ezrin had an increased immunoexpression in the gastric mucosa of cats with chronic gastritis.
Collapse
|
3
|
Cao M, Wang G, He H, Yue R, Zhao Y, Pan L, Huang W, Guo Y, Yin T, Ma L, Zhang D, Huang X. Hemoglobin-Based Oxygen Carriers: Potential Applications in Solid Organ Preservation. Front Pharmacol 2021; 12:760215. [PMID: 34916938 PMCID: PMC8670084 DOI: 10.3389/fphar.2021.760215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ameliorating graft injury induced by ischemia and hypoxia, expanding the donor pool, and improving graft quality and recipient prognosis are still goals pursued by the transplant community. The preservation of organs during this process from donor to recipient is critical to the prognosis of both the graft and the recipient. At present, static cold storage, which is most widely used in clinical practice, not only reduces cell metabolism and oxygen demand through low temperature but also prevents cell edema and resists apoptosis through the application of traditional preservation solutions, but these do not improve hypoxia and increase oxygenation of the donor organ. In recent years, improving the ischemia and hypoxia of grafts during preservation and repairing the quality of marginal donor organs have been of great concern. Hemoglobin-based oxygen carriers (HBOCs) are “made of” natural hemoglobins that were originally developed as blood substitutes but have been extended to a variety of hypoxic clinical situations due to their ability to release oxygen. Compared with traditional preservation protocols, the addition of HBOCs to traditional preservation protocols provides more oxygen to organs to meet their energy metabolic needs, prolong preservation time, reduce ischemia–reperfusion injury to grafts, improve graft quality, and even increase the number of transplantable donors. The focus of the present study was to review the potential applications of HBOCs in solid organ preservation and provide new approaches to understanding the mechanism of the promising strategies for organ preservation.
Collapse
Affiliation(s)
- Min Cao
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoqing Wang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongli He
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhao
- Anesthesiology, Southwest Medicine University, Luzhou, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Huang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Guo
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yin
- Surgical Department, Chengdu Second People's Hospital, Chengdu, China
| | - Lina Ma
- Health Inspection and Quarantine, Chengdu Medical College, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Lo SB, Blaszak RT, Parajuli N. Targeting Mitochondria during Cold Storage to Maintain Proteasome Function and Improve Renal Outcome after Transplantation. Int J Mol Sci 2020; 21:E3506. [PMID: 32429129 PMCID: PMC7279041 DOI: 10.3390/ijms21103506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Kidney transplantation is the preferred treatment for end-stage kidney disease (ESKD). Compared to maintenance dialysis, kidney transplantation results in improved patient survival and quality of life. Kidneys from living donors perform best; however, many patients with ESKD depend on kidneys from deceased donors. After procurement, donor kidneys are placed in a cold-storage solution until a suitable recipient is located. Sadly, prolonged cold storage times are associated with inferior transplant outcomes; therefore, in most situations when considering donor kidneys, long cold-storage times are avoided. The identification of novel mechanisms of cold-storage-related renal damage will lead to the development of new therapeutic strategies for preserving donor kidneys; to date, these mechanisms remain poorly understood. In this review, we discuss the importance of mitochondrial and proteasome function, protein homeostasis, and renal recovery during stress from cold storage plus transplantation. Additionally, we discuss novel targets for therapeutic intervention to improve renal outcomes.
Collapse
Affiliation(s)
- Sorena B. Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Richard T. Blaszak
- Division of Nephrology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
5
|
Alterations of proteins in MDCK cells during acute potassium deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:683-696. [DOI: 10.1016/j.bbapap.2016.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 11/18/2022]
|
6
|
Limkemann A, Lindell SL, Reichstetter H, Plant V, Parrish D, Ramos C, Kowalski C, Quintini C, Mangino MJ. Donor gluconate rescues livers from uncontrolled donation after cardiac death. Surgery 2015; 159:852-61. [PMID: 26619928 DOI: 10.1016/j.surg.2015.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/02/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Ischemia from organ preservation or donation causes cells and tissues to swell owing to loss of energy-dependent mechanisms of control of cell volume. These volume changes cause substantial preservation injury, because preventing these changes by adding cell impermeants to preservation solutions decreases preservation injury. The objective of this study was to assess if this effect could be realized early in uncontrolled donation after cardiac death (DCD) livers by systemically loading donors with gluconate immediately after death to prevent accelerated swelling injury during the warm ischemia period before liver retrieval. METHODS Uncontrolled DCD rat livers were cold-stored in University of Wisconsin solution for 24 hours and reperfused on an isolated perfused liver (IPL) device for 2 hours or transplanted into a rat as an allograft for 7 days. Donors were pretreated with a solution of the impermeant gluconate or a saline control immediately after cardiac death. Livers were retrieved after 30 minutes. RESULTS In vivo, gluconate infusion in donors immediately before or after cardiac death prevented DCD-induced increases in total tissue water, decreased vascular resistance, increased oxygen consumption and synthesis of adenosine triphosphate, increased bile production, decreased lactate dehydrogenase release, and decreased histology injury scores after reperfusion on the IPL relative to saline-treated DCD controls. In the transplant model, donor gluconate pretreatment significantly decreased both alanine aminotransferase the first day after transplantation and total bilirubin the seventh day after transplantation. CONCLUSION Cell and tissue swelling plays a key role in preservation injury of uncontrolled DCD livers, which can be mitigated by early administration of gluconate solutions to the donor immediately after death.
Collapse
Affiliation(s)
- Ashley Limkemann
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Susanne L Lindell
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Heather Reichstetter
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Valerie Plant
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Dan Parrish
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Clementina Ramos
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Chris Kowalski
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | | | - Martin J Mangino
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA; Department of Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA; Department of Physiology and Biophysics, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA.
| |
Collapse
|
7
|
Zhang Y, Fu Z, Zhong Z, Wang R, Hu L, Xiong Y, Wang Y, Ye Q. Hypothermic Machine Perfusion Decreases Renal Cell Apoptosis During Ischemia/Reperfusion Injury via the Ezrin/AKT Pathway. Artif Organs 2015; 40:129-35. [PMID: 26263023 DOI: 10.1111/aor.12534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aimed to explore the potential mechanisms of hypothermic machine perfusion (HMP)-a more efficient way to preserve kidneys from donors after cardiac death than static cold storage (CS), then to provide the basis for further improving donor quality. Twelve healthy male New Zealand rabbits (12 weeks old, weighing 3.0 ± 0.3 kg) were randomly divided into two groups: the HMP group and CS group (n = 6). Rabbits' left kidney was subjected to 35 min of warm ischemic time by clamping the left renal pedicle and 1 h of reperfusion. The kidneys were then hypothermically (4-8°C) preserved in vivo for 4 h with HCA-II solution using HMP or CS methods. Then rabbits underwent a right nephrectomy and the kidney tissues were collected after 24 h of reperfusion. TUNEL staining was performed on paraffin sections to detect apoptosis, and the expressions of cleaved caspase-3, ezrin, AKT, and p-AKT in frozen kidney tissues were detected by Western blotting. The ezrin expression was further confirmed by immunohistochemistry analysis. The apoptosis rate and expression of cleaved caspase-3 in the HMP group were significantly lower than the CS group (P < 0.001 and P = 0.002), meanwhile the expression of cleaved caspase-3 in the HMP and CS groups was significantly increased compared with the normal group (P = 0.035 and P < 0.001), and the expression of ezrin and p-AKT in the HMP group was significantly higher than the CS group (P = 0.005, 0.014). HMP decreased the renal cell apoptosis rate during ischemia/reperfusion injury via the ezrin/AKT pathway.
Collapse
Affiliation(s)
- Yang Zhang
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - Zhen Fu
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - Zibiao Zhong
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei
| | - Ren Wang
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - Long Hu
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - Yan Xiong
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei
| | - Yanfeng Wang
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei
| | - Qifa Ye
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
8
|
Jain S, Keys D, Nydam T, Plenter RJ, Edelstein CL, Jani A. Inhibition of autophagy increases apoptosis during re-warming after cold storage in renal tubular epithelial cells. Transpl Int 2014; 28:214-23. [PMID: 25270002 DOI: 10.1111/tri.12465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/26/2014] [Accepted: 09/21/2014] [Indexed: 01/10/2023]
Abstract
Prolonged cold storage and re-warming (CS/REW) of kidneys are risk factors for delayed graft function (DGF). Studies in renal tubular epithelial cells (RTECs) have determined apoptosis and autophagy in models of either cold storage (CS) or re-warming alone. The effect of both cold storage and re-warming on apoptosis and autophagy, in RTECS is not known and is relevant to DGF as the kidney is subjected to both CS and re-warming. We hypothesized that CS/REW of RTECs would induce autophagy that protects against apoptosis. In CS/REW, there was increased autophagic flux of RTECs. Autophagy inhibition using an Atg5 siRNA resulted in increased cleaved caspase-3 and increased apoptotic cells (on both morphology and annexin V staining) during CS/REW. The effect of autophagy inhibition on necrosis in RTECs is unknown. There were increased necrosis and caspase-1, a mediator of necrosis, during CS/REW, and the Atg5 siRNA had no effect on necrosis and caspase-1. In a kidney transplant model, there was an increase in LC3 II, a marker of autophagy, in kidneys transplanted after cold storage. In summary, autophagic flux is increased during CS/REW. Autophagy inhibition resulted in increased cleaved caspase-3 and increased apoptosis during CS/REW without an effect on necrosis or caspase-1. In conclusion, autophagy inhibition in RTECs after CS/REW induces apoptotic cell death and may be deleterious as a therapy to decrease DGF.
Collapse
|
9
|
Tian T, Lindell SL, Kowalski C, Mangino MJ. Moesin functionality in hypothermic liver preservation injury. Cryobiology 2014; 69:34-40. [PMID: 24836372 DOI: 10.1016/j.cryobiol.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 01/27/2023]
Abstract
The objective of this study was to determine how expression and functionality of the cytoskeletal linker protein moesin is involved in hepatic hypothermic preservation injury. Mouse livers were cold stored in University of Wisconsin (UW) solution and reperfused on an isolated perfused liver (IPL) device for one hour. Human hepatocytes (HepG2) and human or murine sinusoidal endothelial cells (SECs) were cold stored and rewarmed to induce hypothermic preservation injury. The cells were transfected with: wild type moesin, an siRNA duplex specific for moesin, and the moesin mutants T558D and T558A. Tissue and cell moesin expression and its binding to actin were determined by Western blot. Liver IPL functional outcomes deteriorated proportional to the length of cold storage, which correlated with moesin disassociation from the actin cytoskeleton. Cell viability (LDH and WST-8) in the cell models progressively declined with increasing preservation time, which also correlated with moesin disassociation. Transfection of a moesin containing plasmid or an siRNA duplex specific for moesin into HepG2 cells resulted in increased and decreased moesin expression, respectively. Overexpression of moesin protected while moesin knock-down potentiated preservation injury in the HepG2 cell model. Hepatocytes expressing the T558A (inactive) and T558D (active) moesin binding mutants demonstrated significantly more and less preservation injury, respectively. Cold storage time dependently caused hepatocyte detachment from the matrix and cell death, which was prevented by the T558D active moesin mutation. In conclusion, moesin is causally involved in hypothermic liver cell preservation injury through control of its active binding molecular functionality.
Collapse
Affiliation(s)
- Tao Tian
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States
| | - Susanne L Lindell
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States
| | - Chris Kowalski
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States
| | - Martin J Mangino
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States; Department of Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States; Department of Physiology and Biophysics, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States.
| |
Collapse
|
10
|
Mangino MJ, Tian T, Lindell SL. Ezrin and its emerging role in tumor progression: response. Cryobiology 2013; 66:94. [PMID: 23274401 DOI: 10.1016/j.cryobiol.2012.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
|
11
|
Chaiyarit S, Thongboonkerd V. Changes in Mitochondrial Proteome of Renal Tubular Cells Induced by Calcium Oxalate Monohydrate Crystal Adhesion and Internalization Are Related to Mitochondrial Dysfunction. J Proteome Res 2012; 11:3269-80. [PMID: 22512661 DOI: 10.1021/pr300018c] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office
for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center for Research in Complex
Systems Science, Mahidol University, Bangkok,
Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office
for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center for Research in Complex
Systems Science, Mahidol University, Bangkok,
Thailand
| |
Collapse
|
12
|
Tian T, Lindell SL, Lam M, Mangino MJ. Ezrin functionality and hypothermic preservation injury in LLC-PK1 cells. Cryobiology 2012; 65:60-7. [PMID: 22554620 DOI: 10.1016/j.cryobiol.2012.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 02/06/2012] [Accepted: 04/12/2012] [Indexed: 12/21/2022]
Abstract
Renal epithelial cells from donor kidneys are susceptible to hypothermic preservation injury, which is attenuated when they over express the cytoskeletal linker protein ezrin. This study was designed to characterize the mechanisms of this protection. Renal epithelial cell lines were created from LLC-PK1 cells, which expressed mutant forms of ezrin with site directed alterations in membrane binding functionality. The study used cells expressing wild type ezrin, T567A, and T567D ezrin point mutants. The A and D mutants have constitutively inactive and active membrane binding conformations, respectively. Cells were cold stored (4 °C) for 6-24 h and reperfused for 1h to simulate transplant preservation injury. Preservation injury was assessed by mitochondrial activity (WST-1) and LDH release. Cells expressing the active ezrin mutant (T567D) showed significantly less preservation injury compared to wild type or the inactive mutant (T567A), while ezrin-specific siRNA knockdown and the inactive mutant potentiated preservation injury. Ezrin was extracted and identified from purified mitochondria. Furthermore, isolated mitochondria specifically bound anti-ezrin antibodies, which were reversed with the addition of exogenous recombinant ezrin. Recombinant wild type ezrin significantly reduced the sensitivity of the mitochondrial permeability transition pore (mPTP) to calcium, suggesting ezrin may modify mitochondrial function. In conclusion, the cytoskeletal linker protein ezrin plays a significant role in hypothermic preservation injury in renal epithelia. The mechanisms appear dependent on the molecule's open configuration (traditional linker functionality) and possibly a novel mitochondrial specific role, which may include modulation of mPTP function or calcium sensitivity.
Collapse
Affiliation(s)
- Tao Tian
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
13
|
Ozaki KS, Yoshida J, Ueki S, Pettigrew GL, Ghonem N, Sico RM, Lee LY, Shapiro R, Lakkis FG, Pacheco-Silva A, Murase N. Carbon monoxide inhibits apoptosis during cold storage and protects kidney grafts donated after cardiac death. Transpl Int 2011; 25:107-17. [PMID: 21999323 DOI: 10.1111/j.1432-2277.2011.01363.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemia/reperfusion (I/R) injury remains as a serious deleterious factor in kidney transplantation (KTx). We hypothesized that carbon monoxide (CO), an endogenous potent cytoprotective molecule, inhibits hypothermia-induced apoptosis of kidney grafts. Using the rat KTx model mimicking the conditions of donation after cardiac death (DCD) as well as nontransplantable human kidney grafts, this study examined effects of CO in preservation solution in improving the quality of marginal kidney grafts. After cardiac cessation, rat kidneys underwent 40 min warm ischemia (WI) and 24 h cold storage (CS) in control UW or UW containing CO (CO-UW). At the end of CS, kidney grafts in control UW markedly increased mitochondrial porin release into the cytosol and resulted in increased cleaved caspase-3 and PARP expression. In contrast, grafts in CO-UW had significantly reduced mitochondrial breakdown and caspase pathway activation. After KTx, recipient survival significantly improved with CO-UW with less TUNEL(+) cells and reduced mRNA upregulation for proinflammatory mediators (IL-6, TNF-α, iNOS). Furthermore, when nontransplantable human kidney grafts were stored in CO-UW for 24 h, graft PARP expression, TUNEL(+) cells, and proinflammatory mediators were less than those in control UW. CO in UW inhibited hypothermia-induced apoptosis and significantly improved kidney graft function and outcomes of KTx.
Collapse
Affiliation(s)
- Kikumi S Ozaki
- Department of Surgery, Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ozaki KS, Kimura S, Murase N. Use of carbon monoxide in minimizing ischemia/reperfusion injury in transplantation. Transplant Rev (Orlando) 2011; 26:125-39. [PMID: 22000659 DOI: 10.1016/j.trre.2011.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/20/2011] [Indexed: 01/27/2023]
Abstract
Although carbon monoxide (CO) is known to be toxic because of its ability to interfere with oxygen delivery at high concentrations, mammalian cells endogenously generate CO primarily via the catalysis of heme by heme oxygenases. Recent findings have indicated that heme oxygenases and generation of CO serve as a key mechanism to maintain the integrity of the physiological function of organs and supported the development of a new paradigm that CO, at low concentrations, functions as a signaling molecule in the body and exerts significant cytoprotection. Consequently, exogenously delivered CO has been shown to mediate potent protection in various injury models through its anti-inflammatory, vasodilating, and antiapoptotic functions. Ischemia/reperfusion (I/R) injury associated with organ transplantation is one of the major deleterious factors limiting the success of transplantation. Ischemia/reperfusion injury is a complex cascade of interconnected events involving cell damage, apoptosis, vigorous inflammatory responses, microcirculation disturbance, and thrombogenesis. Carbon monoxide has a great potential in minimizing I/R injury. This review will provide an overview of the basic physiology of CO, preclinical studies examining efficacy of CO in I/R injury models, and possible protective mechanisms. Carbon monoxide could be developed to be a valuable therapeutic molecule in minimizing I/R injury in transplantation.
Collapse
Affiliation(s)
- Kikumi S Ozaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
15
|
Lindell SL, Williams N, Brusilovsky I, Mangino MJ. Mouse IPK: A Powerful Tool to Partially Characterize Renal Reperfusion and Preservation Injury. ACTA ACUST UNITED AC 2011; 5:15-22. [PMID: 24932317 PMCID: PMC4056985 DOI: 10.2174/1874418401105010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Main Problem The molecular basis of renal preservation injury is not well understood. Since mouse kidney transplantation models are not useful in this setting, a mouse Isolated Perfused Kidney (IPK) model was developed to take advantage of mouse genetic design capabilities for testing complex biological hypothesis regarding mechanisms of preservation injury in transplanted kidneys. Methods Mouse kidneys were recovered, preserved, and reperfused in-vitro with an acellular physiological crystalloid buffer containing hypo-physiological oncotic pressure. Outcome variables were measured to predict preservation injury. These included perfusate flow, vascular resistance, VO2, urine output, GFR, proteinuria, LDH release, and edema. The model was tested by subjecting mouse kidneys to cold storage in University of Wisconsin (UW) solution for 24, 48, or 72 hours (time-dependent preservation injury), cold storage in Euro-Collins Solution (solution dependent preservation injury), and exposure to prior warm ischemia (DCD dependent preservation injury). Results The model accurately predicted the qualitative and quantitative changes in the readouts based on known responses to preservation injury in kidney transplants in large animals and humans. Conclusion The mouse IPK accurately predicts many of the variables associated with renal organ preservation injury in the very early phases of reperfusion and may provide an attractive model for studying the molecular basis of renal preservation injury.
Collapse
Affiliation(s)
- Susanne L Lindell
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 232980, USA ; Department of Anesthesiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 232980, USA
| | - Natascha Williams
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 232980, USA
| | - Ilia Brusilovsky
- Department of Anesthesiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 232980, USA
| | - Martin J Mangino
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 232980, USA ; Department of Anesthesiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 232980, USA ; Department of Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 232980, USA ; Department of Physiology and Biophysics, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 232980, USA
| |
Collapse
|
16
|
Current world literature. Curr Opin Organ Transplant 2010; 15:254-61. [PMID: 20351662 DOI: 10.1097/mot.0b013e328337a8db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|