1
|
Thomson AW, Sasaki K, Ezzelarab MB. Non-human Primate Regulatory T Cells and Their Assessment as Cellular Therapeutics in Preclinical Transplantation Models. Front Cell Dev Biol 2021; 9:666959. [PMID: 34211972 PMCID: PMC8239398 DOI: 10.3389/fcell.2021.666959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Non-human primates (NHP) are an important resource for addressing key issues regarding the immunobiology of regulatory T cells (Treg), their in vivo manipulation and the translation of adoptive Treg therapy to clinical application. In addition to their phenotypic and functional characterization, particularly in cynomolgus and rhesus macaques, NHP Treg have been isolated and expanded successfully ex vivo. Their numbers can be enhanced in vivo by administration of IL-2 and other cytokines. Both polyclonal and donor antigen (Ag) alloreactive NHP Treg have been expanded ex vivo and their potential to improve long-term outcomes in organ transplantation assessed following their adoptive transfer in combination with various cytoreductive, immunosuppressive and "Treg permissive" agents. In addition, important insights have been gained into the in vivo fate/biodistribution, functional stability, replicative capacity and longevity of adoptively-transferred Treg in monkeys. We discuss current knowledge of NHP Treg immunobiology, methods for their in vivo expansion and functional validation, and results obtained testing their safety and efficacy in organ and pancreatic islet transplantation models. We compare and contrast results obtained in NHP and mice and also consider prospects for future, clinically relevant studies in NHP aimed at improved understanding of Treg biology, and innovative approaches to promote and evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kazuki Sasaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mohamed B. Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Thomson AW, Ezzelarab MB. Generation and functional assessment of nonhuman primate regulatory dendritic cells and their therapeutic efficacy in renal transplantation. Cell Immunol 2020; 351:104087. [PMID: 32197811 DOI: 10.1016/j.cellimm.2020.104087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
Nonhuman primates (NHP) are important pre-clinical models for evaluation of the safety and efficacy of the most promising potential therapeutic advances in organ transplantation based on rodent studies. Although rare, dendritic cells (DC) play important roles in preservation of self tolerance and DC with immunoregulatory properties (regulatory DC; DCreg) can promote transplant tolerance in rodents when adoptively transferred to allograft recipients. NHP DCreg can be generated ex vivo from bone marrow precursors or blood monocytes of cynomolgus or rhesus macaques or baboons. NHP DCreg generated in the presence of anti-inflammatory factors that confer stability and resistance to maturation, subvert alloreactive T cell responses. When infused into rhesus renal allograft recipients before transplant, they safely prolong MHC mis-matched graft survival, associated with attenuation of anti-donor immune reactivity. In this concise review we describe the properties of NHP DCreg and discuss their influence on T cell responses, alloimmunity and organ transplant survival.
Collapse
Affiliation(s)
- Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
|
5
|
Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells. Curr Opin Organ Transplant 2015; 19:348-56. [PMID: 24926700 DOI: 10.1097/mot.0000000000000097] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. RECENT FINDINGS Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. SUMMARY We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.
Collapse
|
6
|
Zhang HP, Wu Y, Liu J, Jiang J, Geng XR, Yang G, Mo L, Liu ZQ, Liu ZG, Yang PC. TSP1-producing B cells show immune regulatory property and suppress allergy-related mucosal inflammation. Sci Rep 2013; 3:3345. [PMID: 24736213 PMCID: PMC4002291 DOI: 10.1038/srep03345] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/11/2013] [Indexed: 01/28/2023] Open
Abstract
Specific immunotherapy (SIT) is the only specific remedy for the treatment of allergic diseases currently. B cells are important immune cells in the immunity. The role of B cells in immune regulatory activities has not been fully understood yet. This study aims to elucidate the role of the thrombospondin (TSP)1-producing B cells in the immune regulatory role of SIT. The results showed that after SIT, the frequency of CD35(+) B cells was increased in the intestine of mice with food allergy. The CD35(+) B cells expressed TSP1 after exposure to specific antigens. Co-culture with the TSP1-producing CD35(+) B cells decreased the levels of CD80/CD86 in dendritic cells; the cells convert naïve CD4(+) T cells to regulatory T cells to inhibit allergic inflammation in the intestine.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Department of Respirology, the First Hospital, Shanxi Medical University, Taiyuan, China
- These authors contributed equally to this work
| | - Yingying Wu
- Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, China
- These authors contributed equally to this work
| | - Jiangqi Liu
- ENT Institute of Shenzhen University, Longgang Central Hospital, ENT Hospital, Shenzhen, China
| | - Jing Jiang
- ENT Institute of Shenzhen University, Longgang Central Hospital, ENT Hospital, Shenzhen, China
| | - Xiao-Rui Geng
- ENT Institute of Shenzhen University, Longgang Central Hospital, ENT Hospital, Shenzhen, China
| | - Gui Yang
- ENT Institute of Shenzhen University, Longgang Central Hospital, ENT Hospital, Shenzhen, China
| | - Lihua Mo
- Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, China
| | - Zhi-Qiang Liu
- ENT Institute of Shenzhen University, Longgang Central Hospital, ENT Hospital, Shenzhen, China
| | - Zhi-Gang Liu
- Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, China
| | - Ping-Chang Yang
- Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Ezzelarab M, Zahorchak A, Lu L, Morelli A, Chalasani G, Demetris A, Lakkis F, Wijkstrom M, Murase N, Humar A, Shapiro R, Cooper D, Thomson A. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates. Am J Transplant 2013; 13:1989-2005. [PMID: 23758811 PMCID: PMC4070451 DOI: 10.1111/ajt.12310] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/03/2013] [Accepted: 04/16/2013] [Indexed: 01/25/2023]
Abstract
We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5-10 × 10(6) /kg), together with the B7-CD28 costimulation blocking agent CTLA4Ig, 7 days before renal transplantation. CTLA4Ig was given for up to 8 weeks and rapamycin, started on Day -2, was maintained with tapering of blood levels until full withdrawal at 6 months. Median graft survival time was 39.5 days in control monkeys (no DC infusion; n = 6) and 113.5 days (p < 0.05) in DCreg-treated animals (n = 6). No adverse events were associated with DCreg infusion, and there was no evidence of induction of host sensitization based on circulating donor-specific alloantibody levels. Immunologic monitoring also revealed regulation of donor-reactive memory CD95(+) T cells and reduced memory/regulatory T cell ratios in DCreg-treated monkeys compared with controls. Termination allograft histology showed moderate combined T cell- and Ab-mediated rejection in both groups. These findings justify further preclinical evaluation of DCreg therapy and their therapeutic potential in organ transplantation.
Collapse
Affiliation(s)
- M. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A.F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - L. Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A.E. Morelli
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - G. Chalasani
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A.J. Demetris
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - F.G. Lakkis
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M. Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - N. Murase
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A. Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - R. Shapiro
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - D.K.C. Cooper
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A.W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Angus W. Thomson, PhD DSc, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392,
| |
Collapse
|
8
|
Myeloid dendritic cells isolated from tissues of SIV-infected Rhesus macaques promote the induction of regulatory T cells. AIDS 2012; 26:263-73. [PMID: 22095196 DOI: 10.1097/qad.0b013e32834ed8df] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine whether the ability of primary myeloid dendritic cells (mDCs) to induce regulatory T cells (Treg) is affected by chronic simian immunodeficiency virus (SIV) infection. DESIGN Modulation of dendritic cell activity with the aim of influencing Treg frequency may lead to new treatment options for HIV and strategies for vaccine development. METHODS Eleven chronically infected SIV(+) Rhesus macaques were compared with four uninfected animals. Immature and mature mDCs were isolated from mesenteric lymph nodes and spleen by cell sorting and cultured with purified autologous non-Treg (CD4(+)CD25(-) T cells). CD25 and FOXP3 up-regulation was used to assess Treg induction. RESULTS The frequency of splenic mDC and plasmacytoid dendritic cell was lower in infected animals than in uninfected animals; their frequency in the mesenteric lymph nodes was not significantly altered, but the percentage of mature mDCs was increased in the mesenteric lymph nodes of infected animals. Mature splenic or mesenteric mDCs from infected animals were significantly more efficient at inducing Treg than mDCs from uninfected animals. Mature mDCs from infected macaques induced more conversion than immature mDCs. Splenic mDCs were as efficient as mesenteric mDCs in this context and CD103 expression by mDCs did not appear to influence the level of conversion. CONCLUSIONS Tissue mDCs from SIV-infected animals exhibit an enhanced capability to induce Treg and may contribute to the accumulation of Treg in lymphoid tissues during progressive infection. The activation status of dendritic cell impacts this process but the capacity to induce Treg was not restricted to mucosal dendritic cells in infected animals.
Collapse
|
9
|
Jesudason S, Collins MG, Rogers NM, Kireta S, Coates PTH. Non-human primate dendritic cells. J Leukoc Biol 2011; 91:217-28. [PMID: 22124138 DOI: 10.1189/jlb.0711355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Non-human primates (NHP) are essential translational models for biomedical research. Dendritic cells (DC) are a group of antigen presenting cells (APC) that play pivotal roles in the immunobiology of health and disease and are attractive cells for adoptive immunotherapy to stimulate and suppress immunity. DC have been studied extensively in humans and mice but until recently, have not been well characterized in NHP. This review considers the available data about DC across a range of NHP species and summarizes the understanding of in vitro-propagated DC and in vivo-isolated DC, which is now established. It is clear that although NHP DC exist within the paradigm of human DC, there are important functional and phenotypic differences when compared with human DC subsets. These differences need to be taken into account when designing preclinical, translational studies of DC therapy using NHP models.
Collapse
Affiliation(s)
- Shilpanjali Jesudason
- Transplantation Immunology Laboratory and Department of Medicine, University of Adelaide, The Queen Elizabeth Hospital Campus, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
10
|
Ezzelarab M, Thomson AW. Tolerogenic dendritic cells and their role in transplantation. Semin Immunol 2011; 23:252-63. [PMID: 21741270 DOI: 10.1016/j.smim.2011.06.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/10/2011] [Indexed: 01/09/2023]
Abstract
The pursuit of clinical transplant tolerance has led to enhanced understanding of mechanisms underlying immune regulation, including the characterization of immune regulatory cells, in particular antigen-presenting cells (APC) and regulatory T cells (Treg), that may play key roles in promoting operational tolerance. Dendritic cells (DC) are highly efficient APC that have been studied extensively in rodents and humans, and more recently in non-human primates. Owing to their ability to regulate both innate and adaptive immune responses, DC are considered to play crucial roles in directing the alloimmune response towards transplant tolerance or rejection. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, the induction of Treg, and inhibition of memory T cell responses. These properties have led to the use of tolerogenic DC as a therapeutic strategy to promote organ transplant tolerance. In rodents, infusion of donor- or recipient-derived tolerogenic DC can extensively prolong donor-specific allograft survival, in association with regulation of the host T cell response. In clinical transplantation, progress has been made in monitoring DC in relation to graft outcome, including studies in operational liver transplant tolerance. Although clinical trials involving immunotherapeutic DC for patients with cancer are ongoing, implementation of human DC therapy in clinical transplantation will require assessment of various critical issues. These include cell isolation and purification techniques, source, route and timing of administration, and combination immunosuppressive therapy. With ongoing non-human primate studies focused on DC therapy, these logistics can be investigated seeking the optimal approaches. The scientific rationale for implementation of tolerogenic DC therapy to promote clinical transplant tolerance is strong. Evaluation of technical and therapeutic logistic issues is an important next step prior to the application of tolerogenic DC in clinical organ transplantation.
Collapse
Affiliation(s)
- Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1540, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
11
|
Non-human primate regulatory T cells: current biology and implications for transplantation. Transplantation 2010; 90:811-6. [PMID: 20671597 DOI: 10.1097/tp.0b013e3181ebf782] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Regulatory T cells (Treg) offer potential for improving long-term outcomes in cell and organ transplantation. The non-human primate model is a valuable resource for addressing issues concerning the transfer of Treg therapy to the clinic. Herein, we discuss the properties of non-human primate Treg and prospects for their evaluation in allotransplantation and xenotransplantation.
Collapse
|