1
|
Wang X, Patel SA, Haddadin M, Cerny J. Post-allogeneic hematopoietic stem cell transplantation viral reactivations and viremias: a focused review on human herpesvirus-6, BK virus and adenovirus. Ther Adv Infect Dis 2021; 8:20499361211018027. [PMID: 34104434 PMCID: PMC8155777 DOI: 10.1177/20499361211018027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus and Epstein-Barr virus have been recognized as potential drivers of morbidity and mortality of patients undergoing allogeneic stem cell transplantation for years. Specific protocols for monitoring, prophylaxis and pre-emptive therapy are in place in many transplant settings. In this review, we focus on the next three most frequent viruses, human herpesvirus-6, BK virus and adenovirus, causing reactivation and/or viremia after allogeneic transplant, which are increasingly detected in patients in the post-transplant period owing to emerging techniques of molecular biology, recipients' characteristics, treatment modalities used for conditioning and factors related donors or stem cell source. Given the less frequent detection of an illness related to these viruses, there are often no specific protocols in place for the management of affected patients. While some patients develop significant morbidity (generally older), others may not need therapy at all (generally younger or children). Furthermore, some of the antiviral therapies used are potentially toxic. With the addition of increased risk of secondary infections, risk of graft failure or increased risk of graft-versus-host disease as well as the relationship with other post-transplant complications, the outcomes of patients with these viremias remain unsatisfactory and even long-term survivors experience increased morbidity.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Shyam A Patel
- Division of Hematology-Oncology, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Michael Haddadin
- Division of Hematology-Oncology, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Jan Cerny
- Division of Hematology and Oncology, Department of Medicine, UMass Memorial Medical Center, 55 Lake Avenue North, Worcester, MA, 01655, USA
| |
Collapse
|
2
|
Santos CAQ, Rhee Y, Czapka MT, Kazi AS, Proia LA. Make Sure You Have a Safety Net: Updates in the Prevention and Management of Infectious Complications in Stem Cell Transplant Recipients. J Clin Med 2020; 9:jcm9030865. [PMID: 32245201 PMCID: PMC7141503 DOI: 10.3390/jcm9030865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplant recipients are at increased risk of infection and immune dysregulation due to reception of cytotoxic chemotherapy; development of graft versus host disease, which necessitates treatment with immunosuppressive medications; and placement of invasive catheters. The prevention and management of infections in these vulnerable hosts is of utmost importance and a key “safety net” in stem cell transplantation. In this review, we provide updates on the prevention and management of CMV infection; invasive fungal infections; bacterial infections; Clostridium difficile infection; and EBV, HHV-6, adenovirus and BK infections. We discuss novel drugs, such as letermovir, isavuconazole, meropenem-vaborbactam and bezlotoxumab; weigh the pros and cons of using fluoroquinolone prophylaxis during neutropenia after stem cell transplantation; and provide updates on important viral infections after hematopoietic stem cell transplant (HSCT). Optimizing the prevention and management of infectious diseases by using the best available evidence will contribute to better outcomes for stem cell transplant recipients, and provide the best possible “safety net” for these immunocompromised hosts.
Collapse
|
3
|
Ward KN, Hill JA, Hubacek P, de la Camara R, Crocchiolo R, Einsele H, Navarro D, Robin C, Cordonnier C, Ljungman P. Guidelines from the 2017 European Conference on Infections in Leukaemia for management of HHV-6 infection in patients with hematologic malignancies and after hematopoietic stem cell transplantation. Haematologica 2019; 104:2155-2163. [PMID: 31467131 PMCID: PMC6821622 DOI: 10.3324/haematol.2019.223073] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023] Open
Abstract
Of the two human herpesvirus 6 (HHV-6) species, human herpesvirus 6B (HHV-6B) encephalitis is an important cause of morbidity and mortality after allogeneic hematopoietic stem cell transplant. Guidelines for the management of HHV-6 infections in patients with hematologic malignancies or post-transplant were prepared a decade ago but there have been no other guidelines since then despite significant advances in the understanding of HHV-6 encephalitis, its therapy, and other aspects of HHV-6 disease in this patient population. Revised guidelines prepared at the 2017 European Conference on Infections in Leukaemia covering diagnosis, preventative strategies and management of HHV-6 disease are now presented.
Collapse
Affiliation(s)
- Katherine N Ward
- Division of Infection and Immunity, University College London, London, UK
| | - Joshua A Hill
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Petr Hubacek
- Department of Medical Microbiology and Department of Paediatric Haematology and Oncology 2 Medical Faculty of Charles University and Motol University Hospital, Prague, Czech Republic
| | | | | | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Julius Maximilians Universität, Würzburg, Germany
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Instituto de Investigación INCLIVA and Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Christine Robin
- Department of Haematology, Henri Mondor Hospital, Assistance Publique-Hopitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Catherine Cordonnier
- Department of Haematology, Henri Mondor Hospital, Assistance Publique-Hopitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | | | | |
Collapse
|
4
|
Possible reactivation of chromosomally integrated human herpesvirus 6 after treatment with histone deacetylase inhibitor. Blood Adv 2019; 2:1367-1370. [PMID: 29898877 DOI: 10.1182/bloodadvances.2018015982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/11/2018] [Indexed: 01/21/2023] Open
Abstract
Key Points
HDAC inhibitors might induce ciHHV-6 reactivation. In ciHHV-6 HSCT recipients posttransplant viral load can estimate persistent host chimerism when the donor is ciHHV-6 negative.
Collapse
|
5
|
Yoshikawa T. Betaherpesvirus Complications and Management During Hematopoietic Stem Cell Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:251-270. [PMID: 29896671 DOI: 10.1007/978-981-10-7230-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two of the four betaherpesviruses, Cytomegalovirus (CMV) and human herpesvirus 6B (HHV-6B), play an important role in opportunistic infections in hematopoietic stem cell transplant (HSCT) recipients. These viruses are ubiquitous in humans and can latently infect mononuclear lymphocytes, complicating the diagnosis of the diseases they cause. Although the detection of viral DNA in a patient's peripheral blood by real-time PCR is widely used for monitoring viral infection, it is insufficient for the diagnosis of virus-associated disease. Theoretically, end-organ disease should be confirmed by detecting either viral antigen or significant amounts of viral DNA in a tissue sample obtained from the involved organ; however, this is often difficult to perform in clinical practice. The frequency of CMV-associated diseases has decreased gradually as a result of the introduction of preemptive or prophylactic treatments; however, CMV and HHV-6B infections remain a major problem in HSCT recipients. Measurement of viral DNA load in peripheral blood or plasma using real-time PCR is commonly used for monitoring these infections. Additionally, recent data suggest that an assessment of host immune response, particularly cytotoxic T-cell response, may be a reliable tool for predicting these viral infections. The antiviral drugs ganciclovir and foscarnet are used as first-line treatments; however, it is well known that these drugs have side effects, such as bone marrow suppression and nephrotoxicity. Further research is required to develop less-toxic antiviral drugs.
Collapse
Affiliation(s)
- Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
6
|
Pritchett JC, Green JS, Thomm AM, Knox KK, Verneris MR, Lund TC. CD4+ T Cells Coexpressing CD134 (OX40) Harbor Significantly Increased Levels of Human Herpesvirus 6B DNA Following Umbilical Cord Blood Transplantation. J Infect Dis 2016; 214:1911-1915. [PMID: 27703035 DOI: 10.1093/infdis/jiw469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/28/2016] [Indexed: 02/01/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B) commonly reactivates after umbilical cord blood transplantation (UCBT) and is associated with delayed engraftment, fever, rash, and central nervous system dysfunction. Recently, CD134 (OX40) has been implicated as a potential viral entry receptor. We evaluated CD4+CD134+/neg-lo and CD8+CD134+/neg-lo cells at day 28 after UCBT in 20 subjects with previously documented HHV-6 reactivation and persistent viremia. Analysis of CD4+CD134+ cells as compared to CD4+CD134neg-lo cells showed 0.308 versus 0.129 copies of HHV-6B/cell (P = .0002). CD8+CD134+/neg-lo cells contained little to no HHV-6B copies. Following UCBT, CD4+CD134+ cells harbor significantly increased levels of HHV-6B, suggesting that CD134 (OX40) may facilitate viral entry.
Collapse
Affiliation(s)
| | - Jaime S Green
- Division of Infectious Disease, Department of Medicine, University of Minnesota Medical School, Minneapolis
| | | | | | | | - Troy C Lund
- Division of Blood and Marrow Transplantation, Department of Pediatrics
| |
Collapse
|
7
|
|
8
|
Abstract
PURPOSE OF REVIEW Human herpesvirus 6 (HHV-6) frequently reactivates after solid-organ and hematopoietic cell transplantation (HCT), and it has been associated with important outcomes in these settings. In 1-2% of recipients or donors, HHV-6 was inherited through chromosomal integration. Although HHV-6 chromosomal integration has not been associated with disease, the resulting very high levels of HHV-6 DNA in human tissue and blood samples can be challenging to interpret in the transplant setting. This review addresses the recent findings regarding the clinical outcomes associated with HHV-6 as well as diagnostic and therapeutic concerns. RECENT FINDINGS The evidence supports a causal association between HHV-6 and central nervous system disease. New studies have further characterized the impact of HHV-6 on the central nervous system. In addition, new studies have explored the associations between HHV-6 and other important outcomes. The implications of integrated HHV-6 in transplant recipients remain undefined, though the possibility of an association with organ rejection has been suggested. New exploratory data exist regarding the safety of antiviral prophylactic and preemptive strategies. SUMMARY Our understanding of the full clinical impact of HHV-6 in the transplant population remains incomplete. A large antiviral trial would not only help to further define causality between HHV-6 associated clinical outcomes but also start to define preventive strategies.
Collapse
|
9
|
Lee SO, Brown R, Razonable R. Chromosomally integrated human herpesvirus-6 in transplant recipients. Transpl Infect Dis 2012; 14:346-354. [DOI: 10.1111/j.1399-3062.2011.00715.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
| | - R.A. Brown
- Division of Infectious Diseases; College of Medicine; Mayo Clinic; Rochester; Minnesota; USA
| | | |
Collapse
|
10
|
The Link between Hypersensitivity Syndrome Reaction Development and Human Herpes Virus-6 Reactivation. Int J Hepatol 2012; 2012:723062. [PMID: 22666603 PMCID: PMC3362035 DOI: 10.1155/2012/723062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/23/2012] [Indexed: 11/30/2022] Open
Abstract
Background. There are challenges in the clinical diagnosis of drug-induced injury and in obtaining information on the reactivation of human herpes viruses (HHV) during idiosyncratic adverse drug reactions. Objectives. (i) To develop a unified list of drugs incriminated in drug-induced hepatotoxicity and severe cutaneous reactions, in which drug hypersensitivity leads to HHV-6 reactivation and further complication of therapy and recovery and (ii) to supplement the already available data on reporting frequencies of liver- or skin-induced cases with knowledge of individual case reports, including HHV-6 reactivation and briefly introducing chromosomally integrated HHV-6. Data Sources and Extraction. Drugs identified as causes of (i) idiosyncratic reactions, (ii) drug-induced hypersensitivity, drug-induced hepatotoxicity, acute liver failure, and Stevens-Johnson syndrome, and (iii) human herpes virus reactivation in PubMed since 1997 have been collected and discussed. Results. Data presented in this paper show that HHV-6 reactivation is associated with more severe organ involvement and a prolonged course of disease. Conclusion. This analysis of HHV-6 reactivation associated with drug-induced severe cutaneous reactions and hepatotoxicity will aid in causality assessment and clinical diagnosis of possible life-threatening events and will provide a basis for further patient characterization and therapy.
Collapse
|
11
|
Clinical Significance of Pretransplant Chromosomally Integrated Human Herpesvirus-6 in Liver Transplant Recipients. Transplantation 2011; 92:224-9. [DOI: 10.1097/tp.0b013e318222444a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Abstract
Herpesviruses are members of a diverse family of viruses that colonize all vertebrates from fish to mammals. Although more than one hundred herpesviruses exist, all are nearly identical architecturally, with a genome consisting of a linear double-stranded DNA molecule (100 to 225 kbp) protected by an icosahedral capsid made up of 162 hollow-centered capsomeres, a tegument surrounding the nucleocapsid, and a viral envelope derived from host membranes. Upon infection, the linear viral DNA is delivered to the nucleus, where it circularizes to form the viral episome. Depending on several factors, the viral cycle can proceed either to a productive infection or to a state of latency. In either case, the viral genetic information is maintained as extrachromosomal circular DNA. Interestingly, however, certain oncogenic herpesviruses such as Marek's disease virus and Epstein-Barr virus can be found integrated at low frequencies in the host's chromosomes. These findings have mostly been viewed as anecdotal and considered exceptions rather than properties of herpesviruses. In recent years, the consistent and rather frequent detection (in approximately 1% of the human population) of human herpesvirus 6 (HHV-6) viral DNA integrated into human chromosomes has spurred renewed interest in our understanding of how these viruses infect, replicate, and propagate themselves. In this review, we provide a historical perspective on chromosomal integration by herpesviruses and present the current state of knowledge on integration by HHV-6 with the possible clinical implications associated with viral integration.
Collapse
|