1
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Smilde BJ, Botman E, de Vries TJ, de Vries R, Micha D, Schoenmaker T, Janssen JJWM, Eekhoff EMW. A Systematic Review of the Evidence of Hematopoietic Stem Cell Differentiation to Fibroblasts. Biomedicines 2022; 10:biomedicines10123063. [PMID: 36551819 PMCID: PMC9775738 DOI: 10.3390/biomedicines10123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts have an important role in the maintenance of the extracellular matrix of connective tissues by producing and remodelling extracellular matrix proteins. They are indispensable for physiological processes, and as such also associate with many pathological conditions. In recent years, a number of studies have identified donor-derived fibroblasts in various tissues of bone marrow transplant recipients, while others could not replicate these findings. In this systematic review, we provide an overview of the current literature regarding the differentiation of hematopoietic stem cells into fibroblasts in various tissues. PubMed, Embase, and Web of Science (Core Collection) were systematically searched for original articles concerning fibroblast origin after hematopoietic stem cell transplantation in collaboration with a medical information specialist. Our search found 5421 studies, of which 151 were analysed for full-text analysis by two authors independently, resulting in the inclusion of 104 studies. Only studies in animals and humans, in which at least one marker was used for fibroblast identification, were included. The results were described per organ of fibroblast engraftment. We show that nearly all mouse and human organs show evidence of fibroblasts of hematopoietic stem cell transfer origin. Despite significant heterogeneity in the included studies, most demonstrate a significant presence of fibroblasts of hematopoietic lineage in non-hematopoietic tissues. This presence appears to increase after the occurrence of tissue damage.
Collapse
Affiliation(s)
- Bernard J. Smilde
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, 1081 HV Amsterdam, The Netherlands
| | - Esmée Botman
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, 1081 HV Amsterdam, The Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, 1081 LA Amsterdam, The Netherlands
| | - Ralph de Vries
- Medical Library, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, 1081 LA Amsterdam, The Netherlands
| | | | - Elisabeth M. W. Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-72-548-4444
| |
Collapse
|
3
|
Zhao C, Guan JX, Hui DY, Zhang NN, Lu LR, Tang LY, Shao CK, Chen JN. Liver involvement in patients with erythropoietic protoporphyria: retrospective analysis of clinicopathological features of 5 cases. Ann Diagn Pathol 2021; 56:151859. [PMID: 34844099 DOI: 10.1016/j.anndiagpath.2021.151859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/24/2023]
Abstract
Erythropoietic protoporphyria (EPP) is a rare inherited disease whose morbidity is about 1:75,000 to 1:200,000. It is caused by the deficiency of porphyrin ferrochelatase (FECH). Liver involvement in EPP is even rarer. The diagnosis of EPP with liver involvement mainly relies on clinical manifestations, laboratory examinations, histopathological examinations and genetic testing, which is still a huge challenge for both clinicians and pathologists. Here, 5 cases of EPP with liver injury were collected, and the clinicopathological features of these patients were analyzed. The clinical manifestations and laboratory examinations varied from person to person, whereas the liver biopsies showed that there were dark brown deposits within the hepatocytes, Kupffer cells, bile canaliculi and the lumen of bile ducts, which was a constant finding by histopathological examination. Gene tests were conducted in two of the five cases, and the results confirmed the diagnosis. Fully understanding of the diseases can help us reduce the rate of missed diagnosis and provide proper treatment as early as possible.
Collapse
Affiliation(s)
- Chang Zhao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jie-Xia Guan
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Da-Yang Hui
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Na-Na Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Li-Rong Lu
- Department of Special Inspection, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou 510000, China
| | - Lu-Ying Tang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
4
|
Lan L, Liu R, Qin LY, Cheng P, Liu BW, Zhang BY, Ding SZ, Li XL. Transplantation of bone marrow-derived endothelial progenitor cells and hepatocyte stem cells from liver fibrosis rats ameliorates liver fibrosis. World J Gastroenterol 2018; 24:237-247. [PMID: 29375209 PMCID: PMC5768942 DOI: 10.3748/wjg.v24.i2.237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the effectiveness for treating liver fibrosis by combined transplantation of bone marrow-derived endothelial progenitor cells (BM-EPCs) and bone marrow-derived hepatocyte stem cells (BDHSCs) from the liver fibrosis environment.
METHODS The liver fibrosis rat models were induced with carbon tetrachloride injections for 6 wk. BM-EPCs from rats with liver fibrosis were obtained by different rates of adherence and culture induction. BDHSCs from rats with liver fibrosis were isolated by magnetic bead cell sorting. Tracing analysis was conducted by labeling EPCs with PKH26 in vitro to show EPC location in the liver. Finally, BM-EPCs and/or BDHSCs transplantation into rats with liver fibrosis were performed to evaluate the effectiveness of BM-EPCs and/or BDHSCs on liver fibrosis.
RESULTS Normal functional BM-EPCs from liver fibrosis rats were successfully obtained. The co-expression level of CD133 and VEGFR2 was 63.9% ± 2.15%. Transplanted BM-EPCs were located primarily in/near hepatic sinusoids. The combined transplantation of BM-EPCs and BDHSCs promoted hepatic neovascularization, liver regeneration and liver function, and decreased collagen formation and liver fibrosis degree. The VEGF levels were increased in the BM-EPCs (707.10 ± 54.32) and BM-EPCs/BDHSCs group (615.42 ± 42.96), compared with those in the model group and BDHSCs group (P < 0.05). Combination of BM-EPCs/BDHSCs transplantation induced maximal up-regulation of PCNA protein and HGF mRNA levels. The levels of alanine aminotransferase (AST), aspartate aminotransferase, total bilirubin (TBIL), prothrombin time (PT) and activated partial thromboplastin time in the BM-EPCs/BDHSCs group were significantly improved, to be equivalent to normal levels (P > 0.05) compared with those in the BDHSC (AST, TBIL and PT, P < 0.05) and BM-EPCs (TBIL and PT, P < 0.05) groups. Transplantation of BM-EPCs/BDHSCs combination significantly reduced the degree of liver fibrosis (staging score of 1.75 ± 0.25 vs BDHSCs 2.88 ± 0.23 or BM-EPCs 2.75 ± 0.16, P < 0.05).
CONCLUSION The combined transplantation exhibited maximal therapeutic effect compared to that of transplantation of BM-EPCs or BDHSCs alone. Combined transplantation of autogenous BM-EPCs and BDHSCs may represent a promising strategy for the treatment of liver fibrosis, which would eventually prevent cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Ling Lan
- Department of Gastroenterology and Hepatology, the People’s Hospital of Zhengzhou University (the Henan Provincial People’s Hospital), Zhengzhou 450003, Henan Province, China
| | - Ran Liu
- Department of Oncology, Henan Provincial Rongjun Hospital, Xinxiang 453000, Henan Province, China
| | - Ling-Yun Qin
- Department of Gastroenterology and Hepatology, the Children’s Hospital of Zhengzhou, Zhengzhou 450003, Henan Province, China
| | - Peng Cheng
- Intensive Care Unit, the Second Affiliated Hospital of Luohe Medical College, Luohe 462000, Henan Province, China
| | - Bo-Wei Liu
- Department of Gastroenterology and Hepatology, the People’s Hospital of Zhengzhou University (the Henan Provincial People’s Hospital), Zhengzhou 450003, Henan Province, China
| | - Bing-Yong Zhang
- Department of Gastroenterology and Hepatology, the People’s Hospital of Zhengzhou University (the Henan Provincial People’s Hospital), Zhengzhou 450003, Henan Province, China
| | - Song-Ze Ding
- Department of Gastroenterology and Hepatology, the People’s Hospital of Zhengzhou University (the Henan Provincial People’s Hospital), Zhengzhou 450003, Henan Province, China
| | - Xiu-Ling Li
- Department of Gastroenterology and Hepatology, the People’s Hospital of Zhengzhou University (the Henan Provincial People’s Hospital), Zhengzhou 450003, Henan Province, China
| |
Collapse
|
5
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Valiente-Alandi I, Albo-Castellanos C, Herrero D, Arza E, Garcia-Gomez M, Segovia JC, Capecchi M, Bernad A. Cardiac Bmi1(+) cells contribute to myocardial renewal in the murine adult heart. Stem Cell Res Ther 2015; 6:205. [PMID: 26503423 PMCID: PMC4620653 DOI: 10.1186/s13287-015-0196-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/15/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction The mammalian adult heart maintains a continuous, low cardiomyocyte turnover rate throughout life. Although many cardiac stem cell populations have been studied, the natural source for homeostatic repair has not yet been defined. The Polycomb protein BMI1 is the most representative marker of mouse adult stem cell systems. We have evaluated the relevance and role of cardiac Bmi1+ cells in cardiac physiological homeostasis. Methods Bmi1CreER/+;Rosa26YFP/+ (Bmi1-YFP) mice were used for lineage tracing strategy. After tamoxifen (TM) induction, yellow fluorescent protein (YFP) is expressed under the control of Rosa26 regulatory sequences in Bmi1+ cells. These cells and their progeny were tracked by FACS, immunofluorescence and RT-qPCR techniques from 5 days to 1 year. Results FACS analysis of non-cardiomyocyte compartment from TM-induced Bmi1-YFP mice showed a Bmi1+-expressing cardiac progenitor cell (Bmi1-CPC: B-CPC) population, SCA-1 antigen-positive (95.9 ± 0.4 %) that expresses some stemness-associated genes. B-CPC were also able to differentiate in vitro to the three main cardiac lineages. Pulse-chase analysis showed that B-CPC remained quite stable for extended periods (up to 1 year), which suggests that this Bmi1+ population contains cardiac progenitors with substantial self-maintenance potential. Specific immunostaining of Bmi1-YFP hearts serial sections 5 days post-TM induction indicated broad distribution of B-CPC, which were detected in variably sized clusters, although no YFP+ cardiomyocytes (CM) were detected at this time. Between 2 to 12 months after TM induction, YFP+ CM were clearly identified (3 ± 0.6 % to 6.7 ± 1.3 %) by immunohistochemistry of serial sections and by flow cytometry of total freshly isolated CM. B-CPC also contributed to endothelial and smooth muscle (SM) lineages in vivo. Conclusions High Bmi1 expression identifies a non-cardiomyocyte resident cardiac population (B-CPC) that contributes to the main lineages of the heart in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0196-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iñigo Valiente-Alandi
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain. .,The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Carmen Albo-Castellanos
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain. .,Vivebiotech, San Sebastian, Spain.
| | - Diego Herrero
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain. .,Immunology and Oncology Department, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain.
| | - Elvira Arza
- Microscopy Unit, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain.
| | - Maria Garcia-Gomez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain.
| | - José C Segovia
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain.
| | - Mario Capecchi
- Howard Hughes Medical Institute University of Utah, Salt Lake City, UT, USA.
| | - Antonio Bernad
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain. .,Immunology and Oncology Department, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
7
|
Yen TH, Alison MR, Goodlad RA, Otto WR, Jeffery R, Cook HT, Wright NA, Poulsom R. Epidermal growth factor attenuates tubular necrosis following mercuric chloride damage by regeneration of indigenous, not bone marrow-derived cells. J Cell Mol Med 2014; 19:463-73. [PMID: 25389045 PMCID: PMC4407604 DOI: 10.1111/jcmm.12478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/02/2014] [Indexed: 12/27/2022] Open
Abstract
To assess effects of epidermal growth factor (EGF) and pegylated granulocyte colony-stimulating factor (P-GCSF; pegfilgrastim) administration on the cellular origin of renal tubular epithelium regenerating after acute kidney injury initiated by mercuric chloride (HgCl2 ). Female mice were irradiated and male whole bone marrow (BM) was transplanted into them. Six weeks later recipient mice were assigned to one of eight groups: control, P-GCSF+, EGF+, P-GCSF+EGF+, HgCl2 , HgCl2 +P-GCSF+, HgCl2 +EGF+ and HgCl2 +P-GCSF+EGF+. Following HgCl2 , injection tubular injury scores increased and serum urea nitrogen levels reached uraemia after 3 days, but EGF-treated groups were resistant to this acute kidney injury. A four-in-one analytical technique for identification of cellular origin, tubular phenotype, basement membrane and S-phase status revealed that BM contributed 1% of proximal tubular epithelium in undamaged kidneys and 3% after HgCl2 damage, with no effects of exogenous EGF or P-GCSF. Only 0.5% proximal tubular cells were seen in S-phase in the undamaged group kidneys; this increased to 7-8% after HgCl2 damage and to 15% after addition of EGF. Most of the regenerating tubular epithelium originated from the indigenous pool. BM contributed up to 6.6% of the proximal tubular cells in S-phase after HgCl2 damage, but only to 3.3% after additional EGF. EGF administration attenuated tubular necrosis following HgCl2 damage, and the major cause of this protective effect was division of indigenous cells, whereas BM-derived cells were less responsive. P-GCSF did not influence damage or regeneration.
Collapse
Affiliation(s)
- Tzung-Hai Yen
- Department of Nephrology and Division of Clinical Toxicology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan; Histopathology Laboratory, Cancer Research UK, London Research Institute, London, UK; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Duchartre Y, Petit N, Moya C, Lalanne M, Dubus P, Verneuil HD, Moreau-Gaudry F, Richard E. Neonatal bone marrow transplantation prevents liver disease in a murine model of erythropoietic protoporphyria. J Hepatol 2011; 55:162-70. [PMID: 21145811 DOI: 10.1016/j.jhep.2010.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/02/2010] [Accepted: 09/19/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Erythropoietic protoporphyria (EPP) is an inherited disorder of heme biosynthesis caused by partial ferrochelatase deficiency, resulting in protoporphyrin IX (PPIX) accumulation in erythrocytes, responsible for skin photosensitivity. In some EPP patients, the development of cholestatic liver injury due to PPIX accumulation can lead to hepatic failure. In adult EPP mice, bone marrow transplantation (BMT) leads to skin photosensitivity correction but fails to reverse liver damages, probably because of the irreversible nature of liver fibrosis. Our aim was to determine the time course of liver disease progression in EPP mice and to evaluate the protective effect of BMT into neonates. METHODS We studied the development of liver disease from birth in EPP mice, in relation with erythroid and hepatic PPIX accumulation. To prevent the development of liver disease, BMT was performed into newborn mice using a novel busulfan-mediated preconditioning assay. RESULTS We showed that hepatic PPIX accumulates during the first 2 weeks and correlates with the onset of a progressive liver fibrosis in 12-day-old EPP mice. Transplantation of normal congenic hematopoietic stem cells into EPP neonates led to long-term donor hematopoiesis recovery. A full correction of erythroid PPIX accumulation and skin photosensitivity was obtained. Furthermore, five months after neonatal BMT, liver damage was almost completely prevented. CONCLUSIONS We demonstrated for the first time that BMT could be successfully used to prevent liver disease in EPP mice and suggested that BMT would be an attractive therapeutic option to prevent severe liver dysfunction in EPP patients.
Collapse
Affiliation(s)
- Yann Duchartre
- Univ. de Bordeaux Biothérapies des maladies génétiques et cancers, U1035, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|