1
|
Battle R, Pritchard D, Peacock S, Hastie C, Worthington J, Jordan S, McCaughlan JA, Barnardo M, Cope R, Collins C, Diaz-Burlinson N, Rosser C, Foster L, Kallon D, Shaw O, Briggs D, Turner D, Anand A, Akbarzad-Yousefi A, Sage D. BSHI and BTS UK guideline on the detection of alloantibodies in solid organ (and islet) transplantation. Int J Immunogenet 2023; 50 Suppl 2:3-63. [PMID: 37919251 DOI: 10.1111/iji.12641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Solid organ transplantation represents the best (and in many cases only) treatment option for patients with end-stage organ failure. The effectiveness and functioning life of these transplants has improved each decade due to surgical and clinical advances, and accurate histocompatibility assessment. Patient exposure to alloantigen from another individual is a common occurrence and takes place through pregnancies, blood transfusions or previous transplantation. Such exposure to alloantigen's can lead to the formation of circulating alloreactive antibodies which can be deleterious to solid organ transplant outcome. The purpose of these guidelines is to update to the previous BSHI/BTS guidelines 2016 on the relevance, assessment, and management of alloantibodies within solid organ transplantation.
Collapse
Affiliation(s)
- Richard Battle
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | | | - Sarah Peacock
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | - Sue Jordan
- National Blood Service Tooting, London, UK
| | | | - Martin Barnardo
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rebecca Cope
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | - Luke Foster
- Birmingham Blood Donor Centre, Birmingham, UK
| | | | - Olivia Shaw
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - David Turner
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Arthi Anand
- Imperial College Healthcare NHS Trust, London, UK
| | | | | |
Collapse
|
2
|
Rickels MR, Eggerman TL, Bayman L, Qidwai JC, Alejandro R, Bridges ND, Hering BJ, Markmann JF, Senior PA, Hunsicker LG. Long-term Outcomes With Islet-Alone and Islet-After-Kidney Transplantation for Type 1 Diabetes in the Clinical Islet Transplantation Consortium: The CIT-08 Study. Diabetes Care 2022; 45:dc212688. [PMID: 36250905 PMCID: PMC9767903 DOI: 10.2337/dc21-2688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine long-term outcomes for islet-alone and islet-after-kidney transplantation in adults with type 1 diabetes complicated by impaired awareness of hypoglycemia. RESEARCH DESIGN AND METHODS This was a prospective interventional and observational cohort study of islet-alone (n = 48) and islet-after-kidney (n = 24) transplant recipients followed for up to 8 years after intraportal infusion of one or more purified human pancreatic islet products under standardized immunosuppression. Outcomes included duration of islet graft survival (stimulated C-peptide ≥0.3 ng/mL), on-target glycemic control (HbA1c <7.0%), freedom from severe hypoglycemia, and insulin independence. RESULTS Of the 48 islet-alone and 24 islet-after-kidney transplantation recipients, 26 and 8 completed long-term follow-up with islet graft function, 15 and 7 withdrew from follow-up with islet graft function, and 7 and 9 experienced islet graft failure, respectively. Actuarial islet graft survival at median and final follow-up was 84% and 56% for islet-alone and 69% and 49% for islet-after-kidney (P = 0.007) with 77% and 49% of islet-alone and 57% and 35% of islet-after-kidney transplantation recipients maintaining posttransplant HbA1c <7.0% (P = 0.0017); freedom from severe hypoglycemia was maintained at >90% in both cohorts. Insulin independence was achieved by 74% of islet-alone and islet-after-kidney transplantation recipients, with more than one-half maintaining insulin independence during long-term follow-up. Kidney function remained stable during long-term follow-up in both cohorts, and rates of sensitization against HLA were low. Severe adverse events occurred at 0.31 per patient-year for islet-alone and 0.43 per patient-year for islet-after-kidney transplantation. CONCLUSIONS Islet transplantation results in durable islet graft survival permitting achievement of glycemic targets in the absence of severe hypoglycemia for most appropriately indicated recipients having impaired awareness of hypoglycemia, with acceptable safety of added immunosuppression for both islet-alone and islet-after-kidney transplantation.
Collapse
Affiliation(s)
- Michael R. Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas L. Eggerman
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Levent Bayman
- Clinical Trials Statistical and Data Management Center, University of Iowa, Iowa City, IA
| | - Julie C. Qidwai
- Clinical Trials Statistical and Data Management Center, University of Iowa, Iowa City, IA
| | - Rodolfo Alejandro
- Diabetes Research Institute and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - Nancy D. Bridges
- National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Bernhard J. Hering
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota, Minneapolis, MN
| | - James F. Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Boston, MA
| | - Peter A. Senior
- Clinical Islet Transplant Program and Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lawrence G. Hunsicker
- Clinical Trials Statistical and Data Management Center, University of Iowa, Iowa City, IA
| | | |
Collapse
|
3
|
The challenge of HLA donor specific antibodies in the management of pancreatic islet transplantation: an illustrative case-series. Sci Rep 2022; 12:12463. [PMID: 35864198 PMCID: PMC9304358 DOI: 10.1038/s41598-022-16782-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022] Open
Abstract
Islet transplantation is a unique paradigm in organ transplantation, since multiple donors are required to achieve complete insulin-independence. Preformed or de novo Donor Specific Antibodies (DSA) may target one or several donor islets, which adds complexity to the analysis of their impact. Adult patients with type 1 diabetes transplanted with pancreatic islets between 2005 and 2018 were included in a single-center observational study. Thirty-two recipients with available sera tested by solid-phase assays for anti-HLA antibodies during their whole follow-up were analyzed. Twenty-five recipients were islet-transplantation-alone recipients, and 7 islet-after-kidney recipients. Seven recipients presented with DSA at any time during follow-up (two with preformed DSA only, one with preformed and de novo DSA, 4 with de novo DSA only). Only islet-transplantation-alone recipients presented with de novo DSA. Three clinical trajectories were identified according to: 1/the presence of preformed DSA, 2/early de novo DSA or 3/late de novo DSA. Only late de novo DSA were associated with unfavorable outcomes, depicted by a decrease of the β-score. Islet transplantation with preformed DSA, even with high MFI values, is associated with favorable outcomes in our experience. On the contrary, de novo DSA, and especially late de novo DSA, may be associated with allograft loss.
Collapse
|
4
|
Van Hulle F, De Groot K, Hilbrands R, Van de Velde U, Suenens K, Stangé G, De Mesmaeker I, De Paep DL, Ling Z, Roep B, Gillard P, Pipeleers D, Keymeulen B, Jacobs-Tulleneers-Thevissen D. Function and composition of pancreatic islet cell implants in omentum of type 1 diabetes patients. Am J Transplant 2022; 22:927-936. [PMID: 34735732 DOI: 10.1111/ajt.16884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/30/2021] [Indexed: 01/25/2023]
Abstract
Intraportal (IP) islet cell transplants can restore metabolic control in type 1 diabetes patients, but limitations raise the need for establishing a functional beta cell mass (FBM) in a confined extrahepatic site. This study reports on function and composition of omental (OM) implants after placement of islet cell grafts with similar beta cell mass as in our IP-protocol (2-5.106 beta cells/kg body weight) on a scaffold. Four of seven C-peptide-negative recipients achieved low beta cell function (hyperglycemic clamp [HGC] 2-8 percent of controls) until laparoscopy, 2-6 months later, for OM-biopsy and concomitant IP-transplant with similar beta cell dose. This IP-transplant increased HGC-values to 15-40 percent. OM-biopsies reflected the composition of initial grafts, exhibiting varying proportions of endocrine-cell-enriched clusters with more beta than alpha cells and leucocyte pole, non-endocrine cytokeratin-positive clusters surrounded by leucocytes, and scaffold remnants with foreign body reaction. OM-implants on a polyglactin-thrombin-fibrinogen-scaffold presented larger endocrine clusters with infiltrating endothelial cells and corresponded to the higher HGC-values. No activation of cellular immunity to GAD/IA2 was measured post-OM-transplant. Establishment of a metabolically adequate FBM in omentum may require a higher beta cell number in grafts but also elimination of their immunogenic non-endocrine components as well as local conditioning that favors endocrine cell engraftment and function.
Collapse
Affiliation(s)
- Freya Van Hulle
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kaat De Groot
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robert Hilbrands
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Diabetes Clinic, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ursule Van de Velde
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Diabetes Clinic, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Krista Suenens
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ines De Mesmaeker
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Beta Cell Bank, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Diedert L De Paep
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Beta Cell Bank, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Department of Surgery, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Beta Cell Bank, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Bart Roep
- Department Internal Medicine, Leiden University Medical Center - LUMC, Leiden, The Netherlands
| | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Daniel Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Diabetes Clinic, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Daniel Jacobs-Tulleneers-Thevissen
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Surgery, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
5
|
Use of Culture to Reach Metabolically Adequate Beta-cell Dose by Combining Donor Islet Cell Isolates for Transplantation in Type 1 Diabetes Patients. Transplantation 2021; 104:e295-e302. [PMID: 32433237 DOI: 10.1097/tp.0000000000003321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clinical islet transplantation is generally conducted within 72 hours after isolating sufficient beta-cell mass. A preparation that does not meet the sufficient dose can be cultured until this is reached after combination with subsequent ones. This retrospective study examines whether metabolic outcome is influenced by culture duration. METHODS Forty type 1 diabetes recipients of intraportal islet cell grafts under antithymocyte globulin induction and mycophenolate mofetil-tacrolimus maintenance immunosuppression were analyzed. One subgroup (n = 10) was transplanted with preparations cultured for ≥96 hours; in the other subgroup (n = 30) grafts contained similar beta-cell numbers but included isolates that were cultured for a shorter duration. Both subgroups were compared by numbers with plasma C-peptide ≥0.5 ng/mL, low glycemic variability associated with C-peptide ≥1.0 ng/mL, and with insulin independence. RESULTS The subgroup with all cells cultured ≥96 hours exhibited longer C-peptide ≥0.5 ng/mL (103 versus 48 mo; P = 0.006), and more patients with low glycemic variability and C-peptide ≥1.0 ng/mL, at month 12 (9/10 versus 12/30; P = 0.005) and 24 (7/10 versus 6/30; P = 0.007). In addition, 9/10 became insulin-independent versus 15/30 (P = 0.03). Grafts with all cells cultured ≥96 hours did not contain more beta cells but a higher endocrine purity (49% versus 36%; P = 0.03). In multivariate analysis, longer culture duration and older recipient age were independently associated with longer graft function. CONCLUSIONS Human islet isolates with insufficient beta-cell mass for implantation within 72 hours can be cultured for 96 hours and longer to combine multiple preparations in order to reach the desired beta-cell dose and therefore result in a better metabolic benefit.
Collapse
|
6
|
Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev 2019; 40:631-668. [PMID: 30541144 PMCID: PMC6424003 DOI: 10.1210/er.2018-00154] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic islet transplantation has become an established approach to β-cell replacement therapy for the treatment of insulin-deficient diabetes. Recent progress in techniques for islet isolation, islet culture, and peritransplant management of the islet transplant recipient has resulted in substantial improvements in metabolic and safety outcomes for patients. For patients requiring total or subtotal pancreatectomy for benign disease of the pancreas, isolation of islets from the diseased pancreas with intrahepatic transplantation of autologous islets can prevent or ameliorate postsurgical diabetes, and for patients previously experiencing painful recurrent acute or chronic pancreatitis, quality of life is substantially improved. For patients with type 1 diabetes or insulin-deficient forms of pancreatogenic (type 3c) diabetes, isolation of islets from a deceased donor pancreas with intrahepatic transplantation of allogeneic islets can ameliorate problematic hypoglycemia, stabilize glycemic lability, and maintain on-target glycemic control, consequently with improved quality of life, and often without the requirement for insulin therapy. Because the metabolic benefits are dependent on the numbers of islets transplanted that survive engraftment, recipients of autoislets are limited to receive the number of islets isolated from their own pancreas, whereas recipients of alloislets may receive islets isolated from more than one donor pancreas. The development of alternative sources of islet cells for transplantation, whether from autologous, allogeneic, or xenogeneic tissues, is an active area of investigation that promises to expand access and indications for islet transplantation in the future treatment of diabetes.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - R Paul Robertson
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
| |
Collapse
|
7
|
van der Torren CR, Zaldumbide A, Duinkerken G, Brand-Schaaf SH, Peakman M, Stangé G, Martinson L, Kroon E, Brandon EP, Pipeleers D, Roep BO. Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia 2017; 60:126-133. [PMID: 27787618 PMCID: PMC6518073 DOI: 10.1007/s00125-016-4125-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/14/2016] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS To overcome the donor shortage in the treatment of advanced type 1 diabetes by islet transplantation, human embryonic stem cells (hESCs) show great potential as an unlimited alternative source of beta cells. hESCs may have immune privileged properties and it is important to determine whether these properties are preserved in hESC-derived cells. METHODS We comprehensively investigated interactions of both innate and adaptive auto- and allo-immunity with hESC-derived pancreatic progenitor cells and hESC-derived endocrine cells, retrieved after in-vivo differentiation in capsules in the subcutis of mice. RESULTS We found that hESC-derived pancreatic endodermal cells expressed relatively low levels of HLA endorsing protection from specific immune responses. HLA was upregulated when exposed to IFNγ, making these endocrine progenitor cells vulnerable to cytotoxic T cells and alloreactive antibodies. In vivo-differentiated endocrine cells were protected from complement, but expressed more HLA and were targets for alloreactive antibody-dependent cellular cytotoxicity and alloreactive cytotoxic T cells. After HLA compatibility was provided by transduction with HLA-A2, preproinsulin-specific T cells killed insulin-producing cells. CONCLUSIONS/INTERPRETATION hESC-derived pancreatic progenitors are hypoimmunogenic, while in vivo-differentiated endocrine cells represent mature targets for adaptive immune responses. Our data support the need for immune intervention in transplantation of hESC-derived pancreatic progenitors. Cell-impermeable macro-encapsulation may suffice.
Collapse
Affiliation(s)
- Cornelis R van der Torren
- Department of Immunohaematology and Blood Transfusion, E3-Q, Leiden University Medical Center, P.O. Box 9600, NL-2300 RC, Leiden, the Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes
| | - Arnaud Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaby Duinkerken
- Department of Immunohaematology and Blood Transfusion, E3-Q, Leiden University Medical Center, P.O. Box 9600, NL-2300 RC, Leiden, the Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes
| | - Simone H Brand-Schaaf
- Department of Immunohaematology and Blood Transfusion, E3-Q, Leiden University Medical Center, P.O. Box 9600, NL-2300 RC, Leiden, the Netherlands
| | - Mark Peakman
- Department of Immunobiology, King's College London School of Medicine, London, UK
| | - Geert Stangé
- JDRF Center for Beta Cell Therapy in Diabetes
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | | | | | | | - Daniel Pipeleers
- JDRF Center for Beta Cell Therapy in Diabetes
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | - Bart O Roep
- Department of Immunohaematology and Blood Transfusion, E3-Q, Leiden University Medical Center, P.O. Box 9600, NL-2300 RC, Leiden, the Netherlands.
- JDRF Center for Beta Cell Therapy in Diabetes, .
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
8
|
Brooks AMS, Carter V, Liew A, Marshall H, Aldibbiat A, Sheerin NS, Manas DM, White SA, Shaw JAM. De Novo Donor-Specific HLA Antibodies Are Associated With Rapid Loss of Graft Function Following Islet Transplantation in Type 1 Diabetes. Am J Transplant 2015; 15:3239-46. [PMID: 26227015 DOI: 10.1111/ajt.13407] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/03/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
Outcomes after islet transplantation continue to improve but etiology of graft failure remains unclear. De novo donor-specific human leukocyte antigen (HLA) antibodies (DSA) posttransplant are increasingly recognized as a negative prognostic marker. Specific temporal associations between DSA and graft function remain undefined particularly in programs undertaking multiple sequential transplants. Impact of de novo DSA on graft function over 12 months following first islet transplant was determined prospectively in consecutive recipients taking tacrolimus/mycophenolate immunosuppression at a single center. Mixed-meal tolerance test was undertaken in parallel with HLA antibody assessment pretransplant and 1-3 months posttransplant. Sixteen participants received a total of 26 islet transplants. Five (19%) grafts were associated with de novo DSA. Five (31%) recipients were affected: three post-first transplant; two post-second transplant. DSA developed within 4 weeks of all sensitizing grafts and were associated with decreased stimulated C-peptide (median [interquartile range]) at 3 months posttransplant (DSA negative: 613(300-1090); DSA positive 106(34-235) pmol/L [p = 0.004]). De novo DSA directed against most recent islet transplant were absolutely associated with loss of graft function despite maintained immunosuppression at 12 months in the absence of a rescue nonsensitizing transplant. Alemtuzumab induction immunosuppression was associated with reduced incidence of de novo DSA formation (p = 0.03).
Collapse
Affiliation(s)
- A M S Brooks
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - V Carter
- Histocompatibility and Immunogenetics Laboratory, National Health Service Blood and Transplant, Newcastle upon Tyne, UK
| | - A Liew
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - H Marshall
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - A Aldibbiat
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - N S Sheerin
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - D M Manas
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - S A White
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - J A M Shaw
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Blau JE, Abegg MR, Flegel WA, Zhao X, Harlan DM, Rother KI. Long-term immunosuppression after solitary islet transplantation is associated with preserved C-peptide secretion for more than a decade. Am J Transplant 2015; 15:2995-3001. [PMID: 26184712 PMCID: PMC5158099 DOI: 10.1111/ajt.13383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 01/25/2023]
Abstract
We report on two patients with type 1 diabetes (T1D) after solitary islet transplantation in 2001. They received steroid-sparing immunosuppression (daclizumab, sirolimus, and tacrolimus according to the Edmonton protocol). Both patients became insulin independent for 2 years: Patient A, a 42-year-old female with a 12-year history of T1D, received two islet infusions; patient B, a 53-year-old female with a 40-year T1D history, received one islet infusion. Pretransplant, both had undetectable C-peptide concentrations and frequent and severe hypoglycemia. Pretransplant, hemoglobin A1c (HbA1c) was 7.8% and 8.8% and insulin requirements were 0.47 and 0.33 units/kg/day, respectively. Posttransplant, C-peptide levels remained detectable while immunosuppression was continued, but decreased over time. Insulin was re-started 2 years posttransplant in both patients. Since patient A's glycemia and insulin requirements trended toward pretransplant levels, immunosuppression was discontinued after 13 years. This resulted in a sudden cessation of C-peptide secretion. Patient B continues on immunosuppression, has better HbA1c, and half the insulin requirement compared to pretransplant. Both patients no longer experience severe hypoglycemia. Herein, we document blood glucose concentrations over time (>30 000 measurements per patient) and β cell function based on C-peptide secretion. Despite renewed insulin dependence, both patients express satisfaction with having undergone the procedure.
Collapse
Affiliation(s)
- J. E. Blau
- Diabetes, Endocrinology, and Obesity Branch, NIDDK National Institutes of Health, Bethesda, MD
| | - M. R. Abegg
- Diabetes, Endocrinology, and Obesity Branch, NIDDK National Institutes of Health, Bethesda, MD
| | - W. A. Flegel
- Department of Transfusion Medicine, NIH Clinical Center National Institutes of Health, Bethesda, MD
| | - X. Zhao
- Diabetes, Endocrinology, and Obesity Branch, NIDDK National Institutes of Health, Bethesda, MD
| | - D. M. Harlan
- Division of Diabetes, Endocrinology, and Nutrition Diabetes Center of Excellence, Department of Internal Medicine, University of Massachusetts Medical School, North Worcester, MA
| | - K. I. Rother
- Diabetes, Endocrinology, and Obesity Branch, NIDDK National Institutes of Health, Bethesda, MD,Corresponding author: Kristina I. Rother,
| |
Collapse
|