1
|
Ochoa-Lantigua P, Moreira-Mendoza J, García Ríos CA, Rodas JA, Leon-Rojas JE. The Little-Known Ribbon-Shaped Piriform Cortex: A Key Node in Temporal Lobe Epilepsy-Anatomical Insights and Its Potential for Surgical Treatment. Diagnostics (Basel) 2024; 14:2838. [PMID: 39767200 PMCID: PMC11674810 DOI: 10.3390/diagnostics14242838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The piriform cortex (PC) plays a pivotal role in the onset and propagation of temporal lobe epilepsy (TLE), making it a potential target for therapeutic interventions. This review delves into the anatomy and epileptogenic connections of the PC, highlighting its significance in seizure initiation and resistance to pharmacological treatments. Despite its importance, the PC remains underexplored in surgical approaches for TLE. We examine the specific neuroanatomy of the PC as well as the limitations of current imaging techniques and surgical interventions, emphasizing the need for improved imaging protocols to safely target the PC, especially in minimally invasive procedures. Furthermore, the PC's proximity to vital structures, such as the lenticulostriate arteries, presents challenges that must be addressed in future research. By developing multimodal imaging techniques and refining surgical strategies, the PC could emerge as a crucial node in improving seizure freedom outcomes for TLE patients.
Collapse
Affiliation(s)
| | | | | | - Jose A. Rodas
- School of Psychology, University College Dublin, D04 V1W8 Dublin, Ireland
- Escuela de Psicología, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Jose E. Leon-Rojas
- Medical School, Universidad de las Américas (UDLA), Quito 170124, Ecuador
| |
Collapse
|
2
|
Bauer T, Olbrich S, Groteklaes A, Lehnen NC, Zidan M, Lange A, Bisten J, Walger L, Faber J, Bruchhausen W, Vollmuth P, Herrlinger U, Radbruch A, Surges R, Sabir H, Rüber T. Proof of concept: Portable ultra-low-field magnetic resonance imaging for the diagnosis of epileptogenic brain pathologies. Epilepsia 2024; 65:3607-3618. [PMID: 39470733 DOI: 10.1111/epi.18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVE High-field magnetic resonance imaging (MRI) is a standard in the diagnosis of epilepsy. However, high costs and technical barriers have limited adoption in low- and middle-income countries. Even in high-income nations, many individuals with epilepsy face delays in undergoing MRI. Recent advancements in ultra-low-field (ULF) MRI technology, particularly the development of portable scanners, offer a promising solution to the limited accessibility of MRI. In this study, we present and evaluate the imaging capability of ULF MRI in detecting structural abnormalities typically associated with epilepsy and compare it to high-field MRI at 3 T. METHODS Data collection was conducted within 3 consecutive weeks at the University Hospital Bonn. Inclusion criteria were a minimum age of 18 years, diagnosed epilepsy, and clinical high-field MRI with abnormalities. We used a .064 T Swoop portable MR Imaging System. Both high-field MRI and ULF MRI scans were evaluated independently by two experienced neuroradiologists as part of their clinical routine, comparing pathology detection and diagnosis completeness. RESULTS Twenty-three individuals with epilepsy were recruited. One subject presented with a dual pathology. Across the entire cohort, in 17 of 24 (71%) pathologies, an anomaly colocalizing with the actual lesion was observed on ULF MRI. For 11 of 24 (46%) pathologies, the full diagnosis could be made based on ULF MRI. Tumors and posttraumatic lesions could be diagnosed best on ULF MRI, whereas cortical dysplasia and other focal pathologies were the least well diagnosed. SIGNIFICANCE This single-center series of individuals with epilepsy demonstrates the feasibility and utility of ULF MRI for the field of epileptology. Its integration into epilepsy care offers transformative potential, particularly in resource-limited settings. Further research is needed to position ULF MRI within imaging modalities in the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Tobias Bauer
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Simon Olbrich
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Anne Groteklaes
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | | | - Mousa Zidan
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Annalena Lange
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Institute for Computer Science, University of Bonn, Bonn, Germany
- Section for Global Health, Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Justus Bisten
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Institute for Computer Science, University of Bonn, Bonn, Germany
| | - Lennart Walger
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Walter Bruchhausen
- Section for Global Health, Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | | | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Center for Medical Data Usability and Translation, University of Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Hemmen Sabir
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Theodor Rüber
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Center for Medical Data Usability and Translation, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Wang J, Xia X, Zhang B, Ma X, Shi F, Wei Y, Li L, Meng X. Association of glymphatic system dysfunction with cognitive impairment in temporal lobe epilepsy. Front Aging Neurosci 2024; 16:1459580. [PMID: 39493279 PMCID: PMC11527717 DOI: 10.3389/fnagi.2024.1459580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives To explore the relationship between glymphatic dysfunction and cognitive impairment in unilateral temporal lobe epilepsy (TLE). Methods This study retrospectively included 38 patients with unilateral TLE and 26 age- and gender-matched healthy controls (HCs). The diffusion tensor image analysis along the perivascular space (DTI-ALPS) index, choroid plexus volume (CPV), and cognitive assessment were obtained for each participant. Neuropsychological test batteries included Montreal Cognitive Assessment (MoCA), Minimum Mental State Examination, Arithmetic Test (AT), Digit Symbol Substitution Test (DSST), Digit Span Test (DST), Boston Naming Test, Block design, Phonological Fluency Test (PFT), and Semantic Verbal Fluency (SVF). Results Compared to HCs, TLE patients had lower scores of MoCA, AT, DSST, DST, Block design, PFT and SVF (all p < 0.05) and lower values of mean DTI-ALPS index (1.491 ± 0.142 vs. 1.642 ± 0.123, p < 0.001). Significantly lower DTI-ALPS index values were observed in the ipsilateral hemisphere than in the contralateral hemisphere (1.466 ± 0.129 vs. 1.517 ± 0.175, p = 0.013) for patients with unilateral TLE. Correlation analyses found that SVF performance was significantly or borderline significantly associated with glymphatic function (FDR-corrected p < 0.05 for all DTI-ALPS index and FDR-corrected p = 0.057 for CPV) in TLE patients. Linear regression analyses showed that increased CPV and decreased DTI-ALPS index were independent risk factors for semantic fluency impairment (all p < 0.05). Furthermore, mediation analyses found the mediator role of the mean DTI-ALPS index in the relationship between choroid plexus enlargement and semantic fluency impairment (indirect effect: β = -0.182, 95%CI = -0.486 to -0.037). Conclusion These findings reveal the important role of the DTI-ALPS index and CPV in SVF performance in unilateral TLE. Decreased DTI-ALPS index and increased CPV are the independent risk factors for semantic fluency impairment. The DTI-ALPS index may fully mediate the relationship between CP enlargement and SVF performance. These insights provide a radiological foundation for further investigations into the mechanism of the glymphatic system in TLE pathophysiology.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaona Xia
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Bin Zhang
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaotian Ma
- Department of Medicine Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Ying Wei
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Ling Li
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiangshui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Tsytsarev V, Sopova JV, Leonova EI, Inyushin M, Markina AA, Chirinskaite AV, Volnova AB. Neurophotonic methods in approach to in vivo animal epileptic models: Advantages and limitations. Epilepsia 2024; 65:600-614. [PMID: 38115808 PMCID: PMC10948300 DOI: 10.1111/epi.17870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Neurophotonic technology is a rapidly growing group of techniques that are based on the interactions of light with natural or genetically modified cells of the neural system. New optical technologies make it possible to considerably extend the tools of neurophysiological research, from the visualization of functional activity changes to control of brain tissue excitability. This opens new perspectives for studying the mechanisms underlying the development of human neurological diseases. Epilepsy is one of the most common brain disorders; it is characterized by recurrent seizures and affects >1% of the world's population. However, how seizures occur, spread, and terminate in a healthy brain is still unclear. Therefore, it is extremely important to develop appropriate models to accurately explore the causal relationship of epileptic activity. The use of neurophotonic technologies in epilepsy research falls into two broad categories: the visualization of neural epileptic activity, and the direct optical influence on neurons to induce or suppress epileptic activity. An optogenetic variant of the classical kindling model of epileptic seizures, in which activatable cells are genetically defined, is called optokindling. Research is also underway concerning the application of neurophotonic techniques for suppressing epileptic activity, aiming to bring these methods into clinical practice. This review aims to systematize and describe new approaches that use combinations of different neurophotonic methods to work with in vivo models of epilepsy. These approaches overcome many of the shortcomings associated with classical animal models of epilepsy and thus increase the effectiveness of developing new diagnostic methods and antiepileptic therapy.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- University of Maryland School of Medicine, Department of Neurobiology 20 Penn St, HSF-2, 21201 MD, Baltimore, United States
| | - Julia V. Sopova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena I. Leonova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | - Alisa A. Markina
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna B. Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
5
|
Tang Y, Xiao L, Deng C, Zhu H, Gao X, Li J, Yang Z, Liu D, Feng L, Hu S. [ 18F]FDG PET metabolic patterns in mesial temporal lobe epilepsy with different pathological types. Eur Radiol 2024; 34:887-898. [PMID: 37581655 DOI: 10.1007/s00330-023-10089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES To investigate [18F]FDG PET patterns of mesial temporal lobe epilepsy (MTLE) patients with distinct pathologic types and provide possible guidance for predicting long-term prognoses of patients undergoing epilepsy surgery. METHODS This was a retrospective review of MTLE patients who underwent anterior temporal lobectomy between 2016 and 2021. Patients were classified as having chronic inflammation and gliosis (gliosis, n = 44), hippocampal sclerosis (HS, n = 43), or focal cortical dysplasia plus HS (FCD-HS, n = 13) based on the postoperative pathological diagnosis. Metabolic patterns and the severity of metabolic abnormalities were investigated among MTLE patients and healthy controls (HCs). The standardized uptake value (SUV), SUV ratio (SUVr), and asymmetry index (AI) of regions of interest were applied to evaluate the severity of metabolic abnormalities. Imaging processing was performed with statistical parametric mapping (SPM12). RESULTS With a mean follow-up of 2.8 years, the seizure freedom (Engel class IA) rates of gliosis, HS, and FCD-HS were 54.55%, 62.79%, and 69.23%, respectively. The patients in the gliosis group presented a metabolic pattern with a larger involvement of extratemporal areas, including the ipsilateral insula. SUV, SUVr, and AI in ROIs were decreased for patients in all three MTLE groups compared with those of HCs, but the differences among all three MTLE groups were not significant. CONCLUSIONS MTLE patients with isolated gliosis had the worst prognosis and hypometabolism in the insula, but the degree of metabolic decrease did not differ from the other two groups. Hypometabolic regions should be prioritized for [18F]FDG PET presurgical evaluation rather than [18F]FDG uptake values. CLINICAL RELEVANCE STATEMENT This study proposes guidance for optimizing the operation scheme in patients with refractory MTLE and emphasizes the potential of molecular neuroimaging with PET using selected tracers to predict the postsurgical histology of patients with refractory MTLE epilepsy. KEY POINTS • MTLE patients with gliosis had poor surgical outcomes and showed a distinct pattern of decreased metabolism in the ipsilateral insula. • In the preoperative assessment of MTLE, it is recommended to prioritize the evaluation of glucose hypometabolism areas over [18F]FDG uptake values. • The degree of glucose hypometabolism in the epileptogenic focus was not associated with the surgical outcomes of MTLE.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomei Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, Jiangxi, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Biological, Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Shariff S, Nouh HA, Inshutiyimana S, Kachouh C, Abdelwahab MM, Nazir A, Wojtara M, Uwishema O. Advances in understanding the pathogenesis of epilepsy: Unraveling the molecular mechanisms: A cross-sectional study. Health Sci Rep 2024; 7:e1896. [PMID: 38361811 PMCID: PMC10867297 DOI: 10.1002/hsr2.1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Epilepsy is characterized by having two or more unprovoked seizures. Understanding the pathogenesis of epilepsy, requires deep investigation into the molecular mechanisms. This helps develop diagnostic techniques, treatments, and pharmacotherapy. It also enhances precision medicine and individualized treatment processes. This article reviews all the molecular mechanisms predisposing to epileptogenesis, presents the current diagnostic techniques and drug therapy, and suggests future perspectives in treating Epilepsy in a more comprehensive and holistic approach. Methodology Four authors searched keywords concerning epilepsy at a molecular level, Epilepsy diagnostic techniques and technologies, and antiepileptic drug therapy and precision medicine. Separate search strategies were conducted for each concern and retrieved articles were reviewed for relevant results. Results The traditional diagnostic techniques for Epilepsy and its pathogenesis are insufficient in highlighting dynamic brain changes. For this, emerging technologies including genetic sequencing and profiling, and functional neuroimaging techniques are prevailing. Concerning treatment, the current approach focuses on managing symptoms and stopping seizures using antiseizure medications. However, their usage is limited by developing resistance to such drugs. Some therapies show promise, although most antiseizure drugs do not prevent epilepsy. Discussion Understanding epileptogenesis at a molecular and genetic level aids in developing new antiepileptic pharmacotherapy. The aim is to develop therapies that could prevent seizures or modify disease course, decreasing the severity and avoiding drug resistance. Gene therapy and precision medicine are promising but applications are limited due to the heterogeneity in studying the Epileptic brain, dynamically. The dynamic investigation of the epileptic brain with its comorbidities works hand-in-hand with precision medicine, in developing personalized treatment plans.
Collapse
Affiliation(s)
- Sanobar Shariff
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineYerevan State Medical UniversityYerevanArmenia
| | - Halah A. Nouh
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineLebanese UniversityBeirutLebanon
| | - Samuel Inshutiyimana
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUnited States International University‐AfricaNairobiKenya
| | - Charbel Kachouh
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineSaint‐Joseph UniversityBeirutLebanon
| | - Maya M. Abdelwahab
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineHelwan UniversityCairoEgypt
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Magda Wojtara
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineClinton Global Initiative UniversityNew YorkNew YorkUSA
- Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| |
Collapse
|
7
|
Doss DJ, Johnson GW, Englot DJ. Imaging and Stereotactic Electroencephalography Functional Networks to Guide Epilepsy Surgery. Neurosurg Clin N Am 2024; 35:61-72. [PMID: 38000842 PMCID: PMC10676462 DOI: 10.1016/j.nec.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Epilepsy surgery is a potentially curative treatment of drug-resistant epilepsy that has remained underutilized both due to inadequate referrals and incomplete localization hypotheses. The complexity of patients evaluated for epilepsy surgery has increased, thus new approaches are necessary to treat these patients. The paradigm of epilepsy surgery has evolved to match this challenge, now considering the entire seizure network with the goal of disrupting it through resection, ablation, neuromodulation, or a combination. The network paradigm has the potential to aid in identification of the seizure network as well as treatment selection.
Collapse
Affiliation(s)
- Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Avenue South, Medical Center North AA-1105, Nashville, TN 37232, USA; Vanderbilt Institute for Surgery and Engineering (VISE), 1161 21st Avenue South, MCN S2323, Nashville, TN 37232, USA
| | - Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Avenue South, Medical Center North AA-1105, Nashville, TN 37232, USA; Vanderbilt Institute for Surgery and Engineering (VISE), 1161 21st Avenue South, MCN S2323, Nashville, TN 37232, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Avenue South, Medical Center North AA-1105, Nashville, TN 37232, USA; Vanderbilt Institute for Surgery and Engineering (VISE), 1161 21st Avenue South, MCN S2323, Nashville, TN 37232, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, 1161 21st Avenue South, T4224 Medical Center North, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, PMB 351824, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Department of Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Taha A, Alassi A, Gjedde A, Wong DF. Transforming Neurology and Psychiatry: Organ-specific PET Instrumentation and Clinical Applications. PET Clin 2024; 19:95-103. [PMID: 37813719 DOI: 10.1016/j.cpet.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
PET technology has immense potential for furthering understanding of the brain and associated disorders, including advancements in high-resolution tomographs and hybrid imaging modalities. Novel radiotracers targeting specific neurotransmitter systems and molecular markers provide opportunities to unveil intricate mechanisms underlying neurologic and psychiatric conditions. As PET imaging techniques and analysis methods continue to be refined, the field is poised to make significant contributions to personalized medicine for more targeted and effective interventions. PET instrumentation has advanced the fields of neurology and psychiatry, providing insights into pathophysiology and development of effective treatments.
Collapse
Affiliation(s)
- Ahmed Taha
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Amer Alassi
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Albert Gjedde
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Neuroscience, University of Copenhagen, Denmark
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Departments of Radiology, Psychiatry, Neurology, Neuroscience, Washington University in St Louis, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Sun S, Tian M, Lin X, Zhao P. Disturbed white matter integrity on diffusion tensor imaging in young children with epilepsy. Clin Radiol 2024; 79:e119-e126. [PMID: 37940443 DOI: 10.1016/j.crad.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
AIM To evaluate whether abnormalities in white matter (WM) integrity are present in young children with epilepsy. MATERIALS AND METHODS Twelve children (3-6 years old) with epilepsy and six matched healthy controls were recruited for brain diffusion tensor imaging (DTI). Track-based spatial statistics (TBSS) was used to analyse and compare DTI indices of mean diffusivity (MD), fractional anisotropy (FA), axial and radial diffusivity (AD/RD) between patients and controls, and correlations between clinical variables and DTI parameters were analysed. RESULTS Compared with controls, patients showed increased FA in the left superior corona radiata and increased AD in the bilateral superior corona radiata. In children with generalised epilepsy, FA was increased in the left external capsule, while AD was decreased in the body of the corpus callosum, the left external capsule and the left superior longitudinal fasciculus. In those with focal epilepsy, FA was increased in the genu and body of the corpus callosum, and RD was decreased in the genu of the corpus callosum and left external capsule. Compared with partial epilepsy, generalised epilepsy was associated with increased FA in the right anterior corona radiata and decreased RD in the right anterior corona radiata and the genu and body of the corpus callosum. No significant correlations were observed between clinical variables and DTI parameters. CONCLUSIONS The results of this study indicate that the microstructure of the white matter is disturbed by epileptic discharges and a compensatory response occurs during early brain development.
Collapse
Affiliation(s)
- S Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - M Tian
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - X Lin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - P Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Zhang C, Xu K, Zhang H, Sha J, Yang H, Zhao H, Chen N, Li K. Recovery of glymphatic system function in patients with temporal lobe epilepsy after surgery. Eur Radiol 2023; 33:6116-6123. [PMID: 37010581 DOI: 10.1007/s00330-023-09588-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVES To investigate the recovery of human glymphatic system (GS) function in patients with temporal lobe epilepsy (TLE) after successful anterior temporal lobectomy (ATL) using diffusion tensor image analysis along the perivascular space (DTI-ALPS). METHODS We retrospectively analysed DTI-ALPS index in 13 patients with unilateral TLE before and after ATL, and compared the index with 20 healthy controls (HCs). Two-sample t tests and paired t tests were performed to analyse differences in the DTI-ALPS index between patients and HCs. The Pearson correlation analysis was used to observe the relationship between the disease duration and GS function. RESULTS The DTI-ALPS index before ATL was significantly lower in the hemisphere ipsilateral to the epileptogenic foci than in the contralateral hemisphere of the patients (p < 0.001, t = - 4.81) and in the ipsilateral hemisphere of the HCs (p = 0.007, t = - 2.90). A significant increase in the DTI-ALPS index was found in the hemisphere ipsilateral to the epileptogenic foci after successful ATL (p = 0.01, t = - 3.01). In addition, the DTI-ALPS index of the lesion side before ATL was significantly correlated with disease duration (p = 0.04, r = - 0.59). CONCLUSIONS DTI-ALPS may be used as a quantitative biomarker evaluating surgical outcomes and TLE disease duration. DTI-ALPS index may also help localise epileptogenic foci in unilateral TLE. Overall, our study suggests that GS may potentially serve as a new method for the management of TLE and a new direction for investigating the mechanism of epilepsy. KEY POINTS • DTI-ALPS index may contribute to epileptogenic foci lateralisation in TLE. • DTI-ALPS index is a potential quantitative feature evaluating surgical outcomes and TLE disease duration. • The GS provides a new perspective for the study of TLE.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China.
| | - Haiyan Zhang
- Department of Radiology, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221006, People's Republic of China
| | - Jingyun Sha
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China
| | - Hongyu Yang
- Department of Radiology, Luhe Hospital, Capital Medical University, Beijing, 101100, People's Republic of China
| | - Houliang Zhao
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province, 221006, People's Republic of China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China.
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, People's Republic of China.
| |
Collapse
|
11
|
Fearns N, Birk D, Bartkiewicz J, Rémi J, Noachtar S, Vollmar C. Quantitative analysis of the morphometric analysis program MAP in patients with truly MRI-negative focal epilepsy. Epilepsy Res 2023; 192:107133. [PMID: 37001290 DOI: 10.1016/j.eplepsyres.2023.107133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE In the presurgical evaluation of epilepsy, identifying the epileptogenic zone is challenging if magnetic resonance imaging (MRI) is negative. Several studies have shown the benefit of using a morphometric analysis program (MAP) on T1-weighted MRI scans to detect subtle lesions. MAP can guide a focused re-evaluation of MRI to ultimately identify structural lesions that were previously overlooked. Data on patients where this additional review after MAP analysis did not reveal any lesions is limited. Here we evaluate the diagnostic yield of MAP in a large group of truly MRI-negative patients. METHODS We identified 68 patients with MRI-negative focal epilepsy and clear localization of the epileptogenic zone by intracranial EEG or postoperative seizure freedom. High resolution 3D T1 data of patients and 73 healthy controls were acquired on a 3 T scanner. Morphometric analysis was performed with MAP software, creating five z-score maps, reflecting different structural properties of the brain and a patient's deviation from the control population, and a neural network-based focal cortical dysplasia probability map. Ten brain regions were specified to quantify whether MAP findings were located in the correct region. Receiver operating characteristic (ROC) analyses were performed to identify the optimal thresholds for each map. RESULTS MAP-guided visual re-evaluation of the original MRI revealed overlooked lesions in three patients. The remaining 65 truly MRI-negative patients were included in the statistical analysis. At the optimal thresholds, maximum sensitivity was 84 %, with 35 % specificity. Balanced accuracy (arithmetic mean of sensitivity and specificity) of the respective maps ranged from 51 % to 60 %, creating three to six times more false positive than true positive findings. CONCLUSION This study confirms that MAP is useful in detecting previously overlooked subtle structural lesions. However, in truly MRI-negative patients, the additional diagnostic yield is very limited.
Collapse
|
12
|
Ratcliffe C, Adan G, Marson A, Solomon T, Saini J, Sinha S, Keller SS. Neurocysticercosis-related Seizures: Imaging Biomarkers. Seizure 2023; 108:13-23. [PMID: 37060627 DOI: 10.1016/j.seizure.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Neurocysticercosis (NCC)-a parasitic CNS infection endemic to developing nations-has been called the leading global cause of acquired epilepsy yet remains understudied. It is currently unknown why a large proportion of patients develop recurrent seizures, often following the presentation of acute seizures. Furthermore, the presentation of NCC is heterogenous and the features that predispose to the development of an epileptogenic state remain uncertain. Perilesional factors (such as oedema and gliosis) have been implicated in NCC-related ictogenesis, but the effects of cystic factors, including lesion load and location, seem not to play a role in the development of habitual epilepsy. In addition, the cytotoxic consequences of the cyst's degenerative stages are varied and the majority of research, relying on retrospective data, lacks the necessary specificity to distinguish between acute symptomatic and unprovoked seizures. Previous research has established that epileptogenesis can be the consequence of abnormal network connectivity, and some imaging studies have suggested that a causative link may exist between NCC and aberrant network organisation. In wider epilepsy research, network approaches have been widely adopted; studies benefiting predominantly from the rich, multimodal data provided by advanced MRI methods are at the forefront of the field. Quantitative MRI approaches have the potential to elucidate the lesser-understood epileptogenic mechanisms of NCC. This review will summarise the current understanding of the relationship between NCC and epilepsy, with a focus on MRI methodologies. In addition, network neuroscience approaches with putative value will be highlighted, drawing from current imaging trends in epilepsy research.
Collapse
Affiliation(s)
- Corey Ratcliffe
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.
| | - Guleed Adan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Anthony Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- The Walton Centre NHS Foundation Trust, Liverpool, UK; Veterinary and Ecological Sciences, National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, University of Liverpool, Liverpool, UK; Tropical and Infectious Diseases Unit, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
13
|
Yoganathan K, Malek N, Torzillo E, Paranathala M, Greene J. Neurological update: structural and functional imaging in epilepsy surgery. J Neurol 2023; 270:2798-2808. [PMID: 36792721 PMCID: PMC10130132 DOI: 10.1007/s00415-023-11619-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Structural and functional imaging prior to surgery in drug-resistant focal epilepsy, has an important role to play alongside electroencephalography (EEG) techniques, in planning the surgical approach and predicting post-operative outcome. This paper reviews the role of structural and functional imaging of the brain, namely computed tomography (CT), magnetic resonance imaging (MRI), functional MRI (fMRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging in the preoperative work-up of people with medically refractory epilepsy. In MRI-negative patients, the precise localisation of the epileptogenic zone may be established by demonstrating hypometabolism on PET imaging or hyperperfusion on SPECT imaging in the area surrounding the seizure focus. These imaging modalities are far less invasive than intracranial EEG, which is the gold standard but requires surgical placement of electrodes or recording grids. Even when intracranial EEG is needed, PET or SPECT imaging can assist in the planning of EEG electrode placement, due to its' limited spatial sampling. Multimodal imaging techniques now allow the multidisciplinary epilepsy surgery team to identify and better characterise focal pathology, determine its' relationship to eloquent areas of the brain and the degree of interconnectedness within both physiological and pathological networks, as well as improve planning and surgical outcomes for patients. This paper will update the reader on this whole field and provide them with a practical guide, to aid them in the selection of appropriate investigations, interpretation of the findings and facilitating patient discussions in individuals with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Katie Yoganathan
- University of Oxford and Oxford University Hospitals, Oxford, UK. .,Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Naveed Malek
- Department of Neurology, Queen's Hospital, Romford, UK
| | - Emma Torzillo
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | - John Greene
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
14
|
Potemkina EG, Salomatina TA, Andreev EV, Abramov KB, Bannikova VD, Dengina NO, Nezdorovina VG, Zabrodskaya YM, Samochernykh KA, Odintsova GV. [MR morphometry in epileptology: progress and perspectives]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:113-119. [PMID: 37325834 DOI: 10.17116/neiro202387031113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Morphometric MRI analysis improves neuroimaging of structural changes in epilepsy. OBJECTIVE To investigate diagnostic potential of MR brain morphometry in neurosurgical epileptology. MATERIAL AND METHODS An interdisciplinary working group reviewed the studies devoted to MR morphometry in epileptology as a part of state assignment No. 056-00119-22-00. Study subject was trials of MR-morphometry in epilepsy. Searching for literature data was conducted in international and national databases between 2017 and 2022 using certain keywords. Final analysis included 36 publications. RESULTS Currently, MR brain morphometry allows measurement of cortical volume and thickness, surface area and depth of furrows, as well as analysis of cortical tortuosity and fractal changes. In neurosurgical epileptology, MR-morphometry has the greatest diagnostic value in MR-negative epilepsy. This method simplifies preoperative diagnosis and reduces costs. CONCLUSION Morphometry in neurosurgical epileptology is an additional method for verifying the epileptogenic zone. Automated programs simplify application of this method.
Collapse
Affiliation(s)
- E G Potemkina
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| | - T A Salomatina
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| | - E V Andreev
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| | - K B Abramov
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| | - V D Bannikova
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| | - N O Dengina
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| | - V G Nezdorovina
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| | - Yu M Zabrodskaya
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| | - K A Samochernykh
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| | - G V Odintsova
- Almazov National Medical Research Centre, Polenov Neurosurgery Research Institute, St. Petersburg, Russia
| |
Collapse
|
15
|
Peplow P, Martinez B. MicroRNAs as potential biomarkers in temporal lobe epilepsy and mesial temporal lobe epilepsy. Neural Regen Res 2023; 18:716-726. [DOI: 10.4103/1673-5374.354510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Mohanty D, Quach M. The Noninvasive Evaluation for Minimally Invasive Pediatric Epilepsy Surgery (MIPES): A Multimodal Exploration of the Localization-Based Hypothesis. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractMinimally invasive pediatric epilepsy surgery (MIPES) is a rising technique in the management of focal-onset drug-refractory epilepsy. Minimally invasive surgical techniques are based on small, focal interventions (such as parenchymal ablation or localized neuromodulation) leading to elimination of the seizure onset zone or interruption of the larger epileptic network. Precise localization of the seizure onset zone, demarcation of eloquent cortex, and mapping of the network leading to seizure propagation are required to achieve optimal outcomes. The toolbox for presurgical, noninvasive evaluation of focal epilepsy continues to expand rapidly, with a variety of options based on advanced imaging and electrophysiology. In this article, we will examine several of these diagnostic modalities from the standpoint of MIPES and discuss how each can contribute to the development of a localization-based hypothesis for potential surgical targets.
Collapse
Affiliation(s)
- Deepankar Mohanty
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Michael Quach
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
17
|
Yan H, Wang X, Yu T, Ni D, Qiao L, Zhang X, Xu C, Shu W, Wang Y, Ren L. The anterior nucleus of the thalamus plays a role in the epileptic network. Ann Clin Transl Neurol 2022; 9:2010-2024. [PMID: 36334281 PMCID: PMC9735375 DOI: 10.1002/acn3.51693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES We investigated both the metabolic differences and interictal/ictal discharges of the anterior nucleus of the thalamus (ANT) in patients with epilepsy to clarify the relationship between the ANT and the epileptic network. METHODS Nineteen patients with drug-resistant epilepsy who underwent stereoelectroencephalography were studied. Metabolic differences in ANT were analyzed using [18F] fluorodeoxyglucose-positron emission tomography with three-dimensional (3D) visual and quantitative analyses. Interictal and ictal discharges in the ANT were analyzed using visual and time-frequency analyses. The relationship between interictal discharge and metabolic differences was analyzed. RESULTS We found that patients with temporal lobe epilepsy (TLE) showed significant metabolic differences in bilateral ANT compared with extratemporal lobe epilepsy in 3D visual and quantitative analyses. Four types of interictal activities were recorded from the ANT: spike, high-frequency oscillation (HFO), slow-wave, and α-rhythmic activity. Spike and HFO waveforms were recorded mainly in patients with TLE. Two spike patterns were recorded: synchronous and independent. In 83.3% of patients, ANT was involved during seizures. Three seizure onset types of ANT were recorded: low-voltage fast activity, rhythmic spikes, and theta band discharge. The time interval of seizure onset between the seizure onset zone and ANT showed two patterns: immediate and delayed. INTERPRETATION ANT can receive either interictal discharges or ictal discharges which propagate from the epileptogenic zones. Independent epileptic discharges can also be recorded from the ANT in some patients. Metabolic anomalies and epileptic discharges in the ANT indicate that the ANT plays a role in the epileptic network in most patients with epilepsy, especially TLE.
Collapse
Affiliation(s)
- Hao Yan
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xueyuan Wang
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Tao Yu
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Duanyu Ni
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Liang Qiao
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xiaohua Zhang
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Cuiping Xu
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Wei Shu
- Department of Functional NeurosurgeryBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of NeuromodulationXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Liankun Ren
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of NeuromodulationXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
18
|
Li J, Feng P, Zhao L, Chen J, Du M, Song J, Wu Y. Transition behavior of the seizure dynamics modulated by the astrocyte inositol triphosphate noise. CHAOS (WOODBURY, N.Y.) 2022; 32:113121. [PMID: 36456345 DOI: 10.1063/5.0124123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Epilepsy is a neurological disorder with recurrent seizures, which convey complex dynamical characteristics including chaos and randomness. Until now, the underlying mechanism has not been fully elucidated, especially the bistable property beneath the epileptic random induction phenomena in certain conditions. Inspired by the recent finding that astrocyte GTPase-activating protein (G-protein)-coupled receptors could be involved in stochastic epileptic seizures, we proposed a neuron-astrocyte network model, incorporating the noise of the astrocytic second messenger, inositol triphosphate (IP3) that is modulated by G-protein-coupled receptor activation. Based on this model, we have statistically analyzed the transitions of epileptic seizures by performing repeatable simulation trials. Our simulation results show that the increase in the IP3 noise intensity induces depolarization-block epileptic seizures together with an increase in neuronal firing frequency, consistent with corresponding experiments. Meanwhile, the bistable states of the seizure dynamics were present under certain noise intensities, during which the neuronal firing pattern switches between regular sparse spiking and epileptic seizure states. This random presence of epileptic seizures is absent when the noise intensity continues to increase, accompanying with an increase in the epileptic depolarization block duration. The simulation results also shed light on the fact that calcium signals in astrocytes play significant roles in the pattern formations of the epileptic seizure. Our results provide a potential pathway for understanding the epileptic randomness in certain conditions.
Collapse
Affiliation(s)
- Jiajia Li
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
| | - Peihua Feng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, National Demonstration Center for Experimental Mechanics Education, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Zhao
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
| | - Junying Chen
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
| | - Mengmeng Du
- School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan 430070, China
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, National Demonstration Center for Experimental Mechanics Education, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Epilepsy in Pediatric Patients—Evaluation of Brain Structures’ Volume Using VolBrain Software. J Clin Med 2022; 11:jcm11164657. [PMID: 36012894 PMCID: PMC9409991 DOI: 10.3390/jcm11164657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is one of the most frequent serious brain disorders. Approximately 30,000 of the 150,000 children and adolescents who experience unprovoked seizures are diagnosed with epilepsy each year. Magnetic resonance imaging is the method of choice in diagnosing and monitoring patients with this condition. However, one very effective tool using MR images is volBrain software, which automatically generates information about the volume of brain structures. A total of 57 consecutive patients (study group) suffering from epilepsy and 34 healthy patients (control group) who underwent MR examination qualified for the study. Images were then evaluated by volBrain. Results showed atrophy of the brain and particular structures—GM, cerebrum, cerebellum, brainstem, putamen, thalamus, hippocampus and nucleus accumbens volume. Moreover, the statistically significant difference in the volume between the study and the control group was found for brain, lateral ventricle and putamen. A volumetric analysis of the CNS in children with epilepsy confirms a decrease in the volume of brain tissue. A volumetric assessment of brain structures based on MR data has the potential to be a useful diagnostic tool in children with epilepsy and can be implemented in clinical work; however, further studies are necessary to enhance the effectiveness of this software.
Collapse
|
20
|
High density electric source imaging in childhood-onset epilepsy due to focal cortical dysplasia. Clin Neurophysiol Pract 2022; 7:245-251. [PMID: 36062078 PMCID: PMC9428727 DOI: 10.1016/j.cnp.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
ESI with 64 electrodes allows accurate localization of the epileptogenic area in patients with FCD. Concordant results with other imaging techniques is associated with excellent outcome. ESI should become a standard imaging tool in pediatric surgical candidates with FCD.
Objective The goal of this study was to investigate the diagnostic utility of electric source imaging (ESI) in the presurgical evaluation of children with focal cortical dysplasia (FCD) and to compare it with other imaging techniques. Methods Twenty patients with epilepsy onset before 18 years, surgically treated focal epilepsy with a minimal follow-up of 2 years, and histologically proven FCD were retrospectively selected. All patients underwent MRI, positron emission tomography (PET), and 16 patients also had ictal single-photon emission computed tomography (iSPECT). ESI, using EEG with 64 electrodes or more (HD-ESI), was performed in all 20 patients. We determined sensitivity, specificity and accuracy of ESI, and compared its yield to that of other imaging techniques. Results Twelve patients were seizure-free post-operatively (60%). Among all patients, highest localization accuracy (80%) was obtained with ESI, followed by PET and iSPECT (75%). When results from ESI and SPECT were concordant 100% of patients achieved Engel I outcome. If ESI and PET showed concordant localization, 90% of patients achieved postoperative seizure freedom. Conclusions Our findings demonstrate that HD-ESI allows accurate localization of the epileptogenic zone in patients with FCD. Significance In combination with other imaging modalities, ESI helps with planning a more accurate surgery and therefore, the chances of postoperative seizure control are higher. Since it is based on EEG recordings, it does not require sedation, which is particularly interesting in pediatric patients. ESI represents an important imaging tool in focal epilepsies due to cortical dysplasia, which might be difficult to detect on standard imaging.
Collapse
|
21
|
Abstract
The brain is a highly energy-demanding organ and requires bioenergetic adaptability to balance normal activity with pathophysiological fuelling of spontaneous recurrent seizures, the hallmark feature of the epilepsies. Recurrent or prolonged seizures have long been known to permanently alter neuronal circuitry and to cause excitotoxic injury and aberrant inflammation. Furthermore, pathological changes in bioenergetics and metabolism are considered downstream consequences of epileptic seizures that begin at the synaptic level. However, as we highlight in this Review, evidence is also emerging that primary derangements in cellular or mitochondrial metabolism can result in seizure genesis and lead to spontaneous recurrent seizures. Basic and translational research indicates that the relationships between brain metabolism and epileptic seizures are complex and bidirectional, producing a vicious cycle that compounds the deleterious consequences of seizures. Metabolism-based treatments such as the high-fat, antiseizure ketogenic diet have become mainstream, and metabolic substrates and enzymes have become attractive molecular targets for seizure prevention and recovery. Moreover, given that metabolism is crucial for epigenetic as well as inflammatory changes, the idea that epileptogenesis can be both negatively and positively influenced by metabolic changes is rapidly gaining ground. Here, we review evidence that supports both pathophysiological and therapeutic roles for brain metabolism in epilepsy.
Collapse
|
22
|
Muthaffar OY. Brain Magnetic Resonance Imaging Findings in Infantile Spasms. Neurol Int 2022; 14:261-270. [PMID: 35324577 PMCID: PMC8952776 DOI: 10.3390/neurolint14010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Infantile spasms are an age-specific epileptic disorder. They occur in infancy and early childhood. They can be caused by multiple etiologies. Structural abnormalities represent an important cause of infantile spasms. Brain magnetic resonance imaging (MRI) is one of the integral modalities in the evaluation of this condition. Purpose: The aim of this study is to review and analyze the clinical characteristics and brain MRI findings in a cohort of children diagnosed with infantile spasms. Material and Methods: A cohort of fifty-six children diagnosed with infantile spasms in infancy and early childhood was included. All of them underwent brain MRI for evaluation. The study was conducted in the period from January 2016 to January 2020. Results: Females comprised 57% of the cohort. The mean age for seizure onset was 5.9 months (SD 2.7). Forty-one patients (73%) had active epilepsy, and 51% were diagnosed with global developmental delay. Consanguinity was present in 59% of the cohort. Most of the follow-up MRIs showed structural abnormalities (84%). Hypoxia was reported in 17% of MRIs. Malformations of cortical development were seen in five patients. Brain MRI findings were normal in 16% of patients, and delayed myelination was seen in nineteen patients. Most of the children with active epilepsy (64%) and developmental delay (82%) had an abnormal brain MRI. It was noticed that abnormal second brain MRIs were more likely to be associated with active epilepsy and developmental delay (p = 0.05). Conclusions: Brain MRI is an integral part of infantile spasms’ clinical evaluation. Infantile spasms and abnormal brain MRI can be associated with active epilepsy and global developmental delay.
Collapse
Affiliation(s)
- Osama Y Muthaffar
- Section of Neurology, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
DiFrancesco JC, Labate A, Romoli M, Chipi E, Salvadori N, Galimberti CA, Perani D, Ferrarese C, Costa C. Clinical and Instrumental Characterization of Patients With Late-Onset Epilepsy. Front Neurol 2022; 13:851897. [PMID: 35359649 PMCID: PMC8963711 DOI: 10.3389/fneur.2022.851897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is classically considered a childhood disease. However, it represents the third most frequent neurological condition in the elderly, following stroke, and dementia. With the progressive aging of the general population, the number of patients with Late-Onset Epilepsy (LOE) is constantly growing, with important economic and social consequences, in particular for the more developed countries where the percentage of elderly people is higher. The most common causes of LOE are structural, mainly secondary to cerebrovascular or infectious diseases, brain tumors, trauma, and metabolic or toxic conditions. Moreover, there is a growing body of evidence linking LOE with neurodegenerative diseases, particularly Alzheimer's disease (AD). However, despite a thorough characterization, the causes of LOE remain unknown in a considerable portion of patients, thus termed as Late-Onset Epilepsy of Unknown origin (LOEU). In order to identify the possible causes of the disease, with an important impact in terms of treatment and prognosis, LOE patients should always undergo an exhaustive phenotypic characterization. In this work, we provide a detailed review of the main clinical and instrumental techniques for the adequate characterization of LOE patients in the clinical practice. This work aims to provide an easy and effective tool that supports routine activity of the clinicians facing LOE.
Collapse
Affiliation(s)
- Jacopo C. DiFrancesco
- Department of Neurology, ASST S. Gerardo Hospital, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano - Bicocca, Monza, Italy
- *Correspondence: Jacopo C. DiFrancesco
| | - Angelo Labate
- Neurophysiopathology Unit, Department of Biomedical and Dental Sciences, Morphological and Functional Images (BIOMORF), University of Messina, Messina, Italy
| | - Michele Romoli
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Chipi
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nicola Salvadori
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Daniela Perani
- Nuclear Medicine Unit and Division of Neuroscience, San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Carlo Ferrarese
- Department of Neurology, ASST S. Gerardo Hospital, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano - Bicocca, Monza, Italy
| | - Cinzia Costa
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Cinzia Costa
| |
Collapse
|
24
|
Tang Y, Li W, Tao L, Li J, Long T, Li Y, Chen D, Hu S. Machine Learning-Derived Multimodal Neuroimaging of Presurgical Target Area to Predict Individual's Seizure Outcomes After Epilepsy Surgery. Front Cell Dev Biol 2022; 9:669795. [PMID: 35127691 PMCID: PMC8814443 DOI: 10.3389/fcell.2021.669795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: Half of the patients who have tailored resection of the suspected epileptogenic zone for drug-resistant epilepsy have recurrent postoperative seizures. Although neuroimaging has become an indispensable part of delineating the epileptogenic zone, no validated method uses neuroimaging of presurgical target area to predict an individual's post-surgery seizure outcome. We aimed to develop and validate a machine learning-powered approach incorporating multimodal neuroimaging of a presurgical target area to predict an individual's post-surgery seizure outcome in patients with drug-resistant focal epilepsy. Materials and Methods: One hundred and forty-one patients with drug-resistant focal epilepsy were classified either as having seizure-free (Engel class I) or seizure-recurrence (Engel class II through IV) at least 1 year after surgery. The presurgical magnetic resonance imaging, positron emission tomography, computed tomography, and postsurgical magnetic resonance imaging were co-registered for surgical target volume of interest (VOI) segmentation; all VOIs were decomposed into nine fixed views, then were inputted into the deep residual network (DRN) that was pretrained on Tiny-ImageNet dataset to extract and transfer deep features. A multi-kernel support vector machine (MKSVM) was used to integrate multiple views of feature sets and to predict seizure outcomes of the targeted VOIs. Leave-one-out validation was applied to develop a model for verifying the prediction. In the end, performance using this approach was assessed by calculating accuracy, sensitivity, and specificity. Receiver operating characteristic curves were generated, and the optimal area under the receiver operating characteristic curve (AUC) was calculated as a metric for classifying outcomes. Results: Application of DRN-MKSVM model based on presurgical target area neuroimaging demonstrated good performance in predicting seizure outcomes. The AUC ranged from 0.799 to 0.952. Importantly, the classification performance DRN-MKSVM model using data from multiple neuroimaging showed an accuracy of 91.5%, a sensitivity of 96.2%, a specificity of 85.5%, and AUCs of 0.95, which were significantly better than any other single-modal neuroimaging (all p ˂ 0.05). Conclusion: DRN-MKSVM, using multimodal compared with unimodal neuroimaging from the surgical target area, accurately predicted postsurgical outcomes. The preoperative individualized prediction of seizure outcomes in patients who have been judged eligible for epilepsy surgery could be conveniently facilitated. This may aid epileptologists in presurgical evaluation by providing a tool to explore various surgical options, offering complementary information to existing clinical techniques.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Weikai Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Lue Tao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Tingting Long
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Yulai Li
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
| |
Collapse
|
25
|
van Lanen RHGJ, Wiggins CJ, Colon AJ, Backes WH, Jansen JFA, Uher D, Drenthen GS, Roebroeck A, Ivanov D, Poser BA, Hoeberigs MC, van Kuijk SMJ, Hoogland G, Rijkers K, Wagner GL, Beckervordersandforth J, Delev D, Clusmann H, Wolking S, Klinkenberg S, Rouhl RPW, Hofman PAM, Schijns OEMG. Value of ultra-high field MRI in patients with suspected focal epilepsy and negative 3 T MRI (EpiUltraStudy): protocol for a prospective, longitudinal therapeutic study. Neuroradiology 2022; 64:753-764. [PMID: 34984522 PMCID: PMC8907090 DOI: 10.1007/s00234-021-02884-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 10/30/2022]
Abstract
PURPOSE Resective epilepsy surgery is a well-established, evidence-based treatment option in patients with drug-resistant focal epilepsy. A major predictive factor of good surgical outcome is visualization and delineation of a potential epileptogenic lesion by MRI. However, frequently, these lesions are subtle and may escape detection by conventional MRI (≤ 3 T). METHODS We present the EpiUltraStudy protocol to address the hypothesis that application of ultra-high field (UHF) MRI increases the rate of detection of structural lesions and functional brain aberrances in patients with drug-resistant focal epilepsy who are candidates for resective epilepsy surgery. Additionally, therapeutic gain will be addressed, testing whether increased lesion detection and tailored resections result in higher rates of seizure freedom 1 year after epilepsy surgery. Sixty patients enroll the study according to the following inclusion criteria: aged ≥ 12 years, diagnosed with drug-resistant focal epilepsy with a suspected epileptogenic focus, negative conventional 3 T MRI during pre-surgical work-up. RESULTS All patients will be evaluated by 7 T MRI; ten patients will undergo an additional 9.4 T MRI exam. Images will be evaluated independently by two neuroradiologists and a neurologist or neurosurgeon. Clinical and UHF MRI will be discussed in the multidisciplinary epilepsy surgery conference. Demographic and epilepsy characteristics, along with postoperative seizure outcome and histopathological evaluation, will be recorded. CONCLUSION This protocol was reviewed and approved by the local Institutional Review Board and complies with the Declaration of Helsinki and principles of Good Clinical Practice. Results will be submitted to international peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER www.trialregister.nl : NTR7536.
Collapse
Affiliation(s)
- R H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands. .,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.
| | - C J Wiggins
- Scannexus, Ultra-High Field MRI Research Center, Maastricht, the Netherlands
| | - A J Colon
- Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | - W H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - D Uher
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - G S Drenthen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - M C Hoeberigs
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, the Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | - K Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | - G L Wagner
- Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| | | | - D Delev
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - H Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - S Wolking
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - S Klinkenberg
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - R P W Rouhl
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P A M Hofman
- Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands.,Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Academic Centre for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, the Netherlands
| |
Collapse
|
26
|
Li T, Niu S, Qiu X, Zhai Z, Yang L, Chen L, Zhang XM. Altered Cerebral Blood Flow is Linked to Disease Duration in Patients with Generalized tonic‒clonic Seizures. Neuropsychiatr Dis Treat 2022; 18:2649-2659. [PMID: 36387946 PMCID: PMC9662018 DOI: 10.2147/ndt.s386509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate cerebral blood flow (CBF) characteristics in individuals with generalized tonic‒clonic seizures (GTCS) during the interictal phase using voxel-based analysis of 3D pseudocontinuous arterial spin labeling (PCASL). PATIENTS AND METHODS Patients with GTCS (GTCS group) (during the interictal period) and healthy volunteers (control group) underwent head MR imaging with a 3.0T MR scanner with a 3D PCASL sequence. CBF was compared between the two groups. Spearman correlations of CBF in regions of interest (ROIs) in GTCS patients with the duration of disease and age of onset were analyzed and corrected using the false discovery rate (FDR). RESULTS Twenty patients with GTCS (GTCS group) and twenty healthy volunteers (control group) were recruited for this study. On 3D PCASL, (1) GTCS patients had lower CBF in the brainstem, right cerebellum, right inferior temporal gyrus, parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, triangular part of inferior frontal gyrus, left temporal pole of superior temporal gyrus and thalamus and had higher CBF in the bilateral superior parietal gyri, precuneus, precentral gyri, postcentral gyri, and left dorsolateral superior frontal gyrus than controls. (2) The CBF of the right temporal pole of the middle temporal gyrus was negatively correlated with the duration of disease (PFDRcorrected<0.05), with a correlation coefficient r of -0.7333 and a PFDRcorrected value of 0.04. CONCLUSION Voxel-based analysis of 3D PCASL imaging can be used to sensitively detect brain perfusion differences in GTCS patients. The decrease in CBF in the right temporal pole of the middle temporal gyrus may be associated with disease onset. These findings may offer new perspectives on the pathogenesis of GTCS and the underlying pathophysiological changes associated with perfusion.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Shaowei Niu
- Department of Infection, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiang Qiu
- Department of Radiology, Integrated TCM & Western Medicine Hospital Affiliated to Chengdu University of TCM, Chengdu First People's Hospital, Chengdu, People's Republic of China
| | - Zhaohua Zhai
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Li Chen
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiao Ming Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| |
Collapse
|
27
|
Sollee J, Tang L, Igiraneza AB, Xiao B, Bai HX, Yang L. Artificial Intelligence for Medical Image Analysis in Epilepsy. Epilepsy Res 2022; 182:106861. [DOI: 10.1016/j.eplepsyres.2022.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
|
28
|
Frazzini V, Cousyn L, Navarro V. Semiology, EEG, and neuroimaging findings in temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:489-518. [PMID: 35964989 DOI: 10.1016/b978-0-12-823493-8.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. First descriptions of TLE date back in time and detailed portraits of epileptic seizures of temporal origin can be found in early medical reports as well as in the works of various artists and dramatists. Depending on the seizure onset zone, several subtypes of TLE have been identified, each one associated with peculiar ictal semiology. TLE can result from multiple etiological causes, ranging from genetic to lesional ones. While the diagnosis of TLE relies on detailed analysis of clinical as well as electroencephalographic (EEG) features, the lesions responsible for seizure generation can be highlighted by multiple brain imaging modalities or, in selected cases, by genetic investigations. TLE is the most common cause of refractory epilepsy and despite the great advances in diagnostic tools, no lesion is found in around one-third of patients. Surgical treatment is a safe and effective option, requiring presurgical investigations to accurately identify the seizure onset zone (SOZ). In selected cases, presurgical investigations need intracerebral investigations (such as stereoelectroencephalography) or dedicated metabolic imaging techniques (interictal PET and ictal SPECT) to correctly identify the brain structures to be removed.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Louis Cousyn
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Vincent Navarro
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France.
| |
Collapse
|
29
|
Abdelgawad EA, Mounir SM, Abdelhay MM, Ameen MA. Magnetic resonance imaging (MRI) volumetry in children with nonlesional epilepsy, does it help? THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epilepsy is a chronic condition characterized by repeated spontaneous seizures. It affects up to 1% of the population worldwide. Children with magnetic resonance imaging (MRI) negative (or “nonlesional”) focal epilepsy constitute the most challenging pharmacoresistant group undergoing pre-neurosurgical evaluation. Volumetric magnetic resonance imaging (VMRI) is a non-invasive brain imaging technique done to measure the volume and structure of specific regions of the brain. It is useful for many things, but primarily for discovering atrophy (wasting away of body tissue) and measuring its progression. The aim of this study is to assess role of volumetric magnetic resonance imaging in evaluation of nonlesional childhood epilepsy in which no specific findings detected in conventional MRI.
Results
There were 20 children with normal MRI brain volumetry (33.3%) and 40 children (66.6%) with abnormal MRI brain volumetry.
Grey matter volume in the abnormal group was significantly higher (P value was 0.001*) than the normal group (mean ± S.D 934.04 ± 118.12 versus 788.57 ± 57.71 respectively). White matter volume in the abnormal group was significantly smaller (P value was < 0.0001*) than in the normal group (mean ± S.D 217.79 ± 65.22 versus 418.07 ± 103.76 respectively). Right hippocampus CA4-DG volume in the abnormal volume group was found to be significantly smaller (P value < 0.0001*) than that of the normal group volume (mean ± S.D 0.095 ± 0.04 versus 0.32 ± 0.36 respectively). Right hippocampus subiculum volume in the abnormal volume group were found to be significantly smaller (P value was < 0.0001*) than that of the normal group volume (mean ± S.D 0.42 ± 0.11 versus 0.84 ± 0.09 respectively). Thalamus volume in the abnormal group was significantly smaller (P value 0.048*) than in the normal group (mean ± S.D 10.235 ± 3.22 versus 11.82 ± 0.75 respectively). Right thalamus was significantly smaller (P value was 0.028*) than in the normal group (mean ± S.D 5.01 ± 1.62 versus 5.91 ± 0.39 respectively). The sensitivity of the right hippocampus subiculum volume and right hippocampus CA4-DG was 100%. The sensitivity of white matter volume and grey matter volume and thalamus was 85% and 75% and 55% respectively. The specificity of the right hippocampus subiculum volume and right hippocampus CA4-DG was 90% and 90% respectively. The specificity of the right hippocampus subiculum volume and right hippocampus CA4-DG and grey matter volume and white matter volume and total hippocampus and thalamus was 100%. The specificity of brain volume was 60%. The accuracy of the right hippocampus subiculum volume and right hippocampus CA4-DG was 100%. The specificity of white matter volume, grey matter volume, thalamus, total hippocampus, and brain volume was 97%, 87%, 65%, 61%, and 57% respectively.
Conclusion
Volumetric magnetic resonance imaging is a promising imaging technique that can provide assistance in evaluation of nonlesional pharmacoresistant childhood epilepsy.
Collapse
|
30
|
Bandopadhyay R, Singh T, Ghoneim MM, Alshehri S, Angelopoulou E, Paudel YN, Piperi C, Ahmad J, Alhakamy NA, Alfaleh MA, Mishra A. Recent Developments in Diagnosis of Epilepsy: Scope of MicroRNA and Technological Advancements. BIOLOGY 2021; 10:1097. [PMID: 34827090 PMCID: PMC8615191 DOI: 10.3390/biology10111097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, resulting from abnormally synchronized episodic neuronal discharges. Around 70 million people worldwide are suffering from epilepsy. The available antiepileptic medications are capable of controlling seizures in around 60-70% of patients, while the rest remain refractory. Poor seizure control is often associated with neuro-psychiatric comorbidities, mainly including memory impairment, depression, psychosis, neurodegeneration, motor impairment, neuroendocrine dysfunction, etc., resulting in poor prognosis. Effective treatment relies on early and correct detection of epileptic foci. Although there are currently a few well-established diagnostic techniques for epilepsy, they lack accuracy and cannot be applied to patients who are unsupportive or harbor metallic implants. Since a single test result from one of these techniques does not provide complete information about the epileptic foci, it is necessary to develop novel diagnostic tools. Herein, we provide a comprehensive overview of the current diagnostic tools of epilepsy, including electroencephalography (EEG) as well as structural and functional neuroimaging. We further discuss recent trends and advances in the diagnosis of epilepsy that will enable more effective diagnosis and clinical management of patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, Guwahati 781101, Assam, India
| |
Collapse
|
31
|
Guo K, Wang J, Cui B, Wang Y, Hou Y, Zhao G, Lu J. [ 18F]FDG PET/MRI and magnetoencephalography may improve presurgical localization of temporal lobe epilepsy. Eur Radiol 2021; 32:3024-3034. [PMID: 34651211 DOI: 10.1007/s00330-021-08336-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate the clinical value of the combination of [18F]FDG PET/MRI and magnetoencephalography (MEG) ([18F]FDG PET/MRI/MEG) in localizing the epileptogenic zone (EZ) in temporal lobe epilepsy (TLE) patients. METHODS Seventy-three patients with localization-related TLE who underwent [18F]FDG PET/MRI and MEG were enrolled retrospectively. PET/MRI images were interpreted by two radiologists; the focal hypometabolism on PET was identified using statistical parametric mapping (SPM). MEG spike sources were co-registered onto T1-weighted sequence and analyzed by Neuromag software. The clinical value of [18F]FDG PET/MRI, MEG, and PET/MRI/MEG in locating the EZ was assessed using cortical resection and surgical outcomes as criteria. The correlations between surgical outcomes and modalities concordant or non-concordant with cortical resection were analyzed. RESULTS For 46.6% (34/73) of patients, MRI showed definitely structural abnormality concordant with surgical resection. SPM results of [18F]FDG PET showed focal temporal lobe hypometabolism concordant with surgical resection in 67.1% (49/73) of patients, while the concordant cases increased to 82.2% (60/73) patients with simultaneous MRI co-registration. MEG was concordant with surgical resection in 71.2% (52/73) of patients. The lobar localization was defined in 94.5% (69/73) of patients by the [18F]FDG PET/MRI/MEG. The results of PET/MRI/MEG concordance with surgical resection were significantly higher than that of PET/MRI or MEG (χ2 = 13.948, p < 0.001; χ2 = 5.393, p = 0.020). The results of PET/MRI/MEG cortical resection concordance with surgical outcome were shown to be better than PET/MRI or MEG (χ2 = 6.695, p = 0.012; χ2 = 16.991, p < 0.0001). CONCLUSIONS Presurgical evaluation by [18F]FDG PET/MRI/MEG could improve the identification of the EZ in TLE and may further guide surgical decision-making. KEY POINTS • Lobar localization was defined in 94.5% of patients by the [18F]FDG PET/MRI/MEG. • The results of PET/MRI/MEG concordance with surgical resection were significantly higher than that of PET/MRI or MEG alone. • The results of PET/MRI/MEG cortical resection concordance with surgical outcome were shown to be better than that of PET/MRI or MEG alone.
Collapse
Affiliation(s)
- Kun Guo
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Jingjuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaqin Hou
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China. .,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
32
|
Yan R, Zhang H, Wang J, Zheng Y, Luo Z, Zhang X, Xu Z. Application value of molecular imaging technology in epilepsy. IBRAIN 2021; 7:200-210. [PMID: 37786793 PMCID: PMC10528966 DOI: 10.1002/j.2769-2795.2021.tb00084.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 10/04/2023]
Abstract
Epilepsy is a common neurological disease with various seizure types, complicated etiologies, and unclear mechanisms. Its diagnosis mainly relies on clinical history, but an electroencephalogram is also a crucial auxiliary examination. Recently, brain imaging technology has gained increasing attention in the diagnosis of epilepsy, and conventional magnetic resonance imaging can detect epileptic foci in some patients with epilepsy. However, the results of brain magnetic resonance imaging are normal in some patients. New molecular imaging has gradually developed in recent years and has been applied in the diagnosis of epilepsy, leading to enhanced lesion detection rates. However, the application of these technologies in epilepsy patients with negative brain magnetic resonance must be clarified. Thus, we reviewed the relevant literature and summarized the information to improve the understanding of the molecular imaging application value of epilepsy.
Collapse
Affiliation(s)
- Rong Yan
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Hai‐Qing Zhang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jing Wang
- Prevention and Health Care, The Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yong‐Su Zheng
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhong Luo
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xia Zhang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zu‐Cai Xu
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
33
|
Fujimoto A, Enoki H, Niimi K, Nozaki T, Baba S, Shibamoto I, Otsuki Y, Oanishi T. Epilepsy in patients with focal cortical dysplasia may be associated with autism spectrum disorder. Epilepsy Behav 2021; 120:107990. [PMID: 33957439 DOI: 10.1016/j.yebeh.2021.107990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Patients with epilepsy associated with focal cortical dysplasia (FCD) may be associated with autism spectrum disorder (ASD). Therefore, the purpose of this study was to compare surgically treated patients with epilepsy secondary to FCD and normal volunteers without epilepsy and to review the neuropathological findings of patients with FCD. METHODS This study involved 38 patients with medically intractable focal onset epileptic seizures who underwent epilepsy surgery (Group 1). All patients had epilepsy associated with FCD. These patients and 38 normal volunteers without epilepsy (Group 2) were administered the autism spectrum quotient (AQ) test, and the groups were compared. RESULTS The 38 patients in Group 1 included 16 females and 22 males (age range 20-60, mean age, 33.0; standard deviation (SD), 11.8 years). The normal volunteers in Group 2 included 22 females and 16 males (age range 20-57, mean age, 30.6 years; SD, 8.8 years). Total AQ scores were significantly higher in Group 1 than Group 2 (p = 0.027). Patients with FCD I showed a higher AQ score than those with FCD II in the AQ test (p ≤ 0.001). CONCLUSION Patients with epilepsy secondary to FCD were associated with higher ASD score than normal volunteers. This tendency was seen more strongly in patients with FCD I than FCD II.
Collapse
Affiliation(s)
- Ayataka Fujimoto
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka, Japan; Seirei Christopher University, Shizuoka, Japan.
| | - Hideo Enoki
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Keiko Niimi
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Toshiki Nozaki
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Shimpei Baba
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | | | - Yoshiro Otsuki
- Department of Pathology, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Tohru Oanishi
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| |
Collapse
|
34
|
Riederer F, Seiger R, Lanzenberger R, Pataraia E, Kasprian G, Michels L, Kollias S, Czech T, Hainfellner JA, Beiersdorf J, Baumgartner C. Automated volumetry of hippocampal subfields in temporal lobe epilepsy. Epilepsy Res 2021; 175:106692. [PMID: 34175792 DOI: 10.1016/j.eplepsyres.2021.106692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Hippocampal sclerosis is the most frequent pathological substrate in drug resistant temporal lobe epilepsy (TLE). Recently 4 types of hippocampal sclerosis (HS) have been defined in a task force by the International League Against Epilepsy (ILAE), based on patterns of cell loss in specific hippocampal subfields. Type 1 HS is most frequent and has the most favorable outcome after epilepsy surgery. We hypothesized that volume loss in specific hippocampal subfields determined by automated volumetry of high resolution MRI would correspond to cell loss in histological reports. MATERIAL AND METHODS In a group of well characterized patients with drug resistant TLE (N = 26 patients, 14 with right-sided focus, 12 with left-sided focus) volumes of the right and left hippocampus and the hippocampal subfields CA1, CA2 + 3, CA4 and dentate gyrus (DG) were estimated automatically using FreeSurfer version 6.0 from high-resolution cerebral MRI and compared to a large group of healthy controls (N = 121). HS subtype classification was attempted based on histological reports. RESULTS Volumes of the whole hippocampus and all investigated hippocampal subfields (CA1, CA2 + 3, CA4 and DG) were significantly lower on the ipsilateral compared the contralateral side (p < 0.001) and compared to the healthy controls (p < 0.001). Conversely, whole hippocampal and hippocampal subfield volumes were not significantly different from healthy control values on the contralateral side. In 12 of 20 patients the pattern of hippocampal volume loss in specific subfields was in accordance with HS types from histology. The highest overlap between automated MRI and histology was achieved for type 1 HS (in 10 of 12 cases). CONCLUSION The automated volumetry of hippocampal subfields, based on high resolution MRI, may have the potential to predict the pattern of cell loss in hippocampal sclerosis before operation.
Collapse
Affiliation(s)
- Franz Riederer
- Department of Neurology, Clinic Hietzing & Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - René Seiger
- Neuroimaging Labs, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Neuroimaging Labs, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Gregor Kasprian
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Johannes Beiersdorf
- Department of Neurology, Clinic Hietzing & Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Christoph Baumgartner
- Department of Neurology, Clinic Hietzing & Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria; Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| |
Collapse
|
35
|
Sone D, Beheshti I. Clinical Application of Machine Learning Models for Brain Imaging in Epilepsy: A Review. Front Neurosci 2021; 15:684825. [PMID: 34239413 PMCID: PMC8258163 DOI: 10.3389/fnins.2021.684825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent and disabling seizures. An increasing number of clinical and experimental applications of machine learning (ML) methods for epilepsy and other neurological and psychiatric disorders are available. ML methods have the potential to provide a reliable and optimal performance for clinical diagnoses, prediction, and personalized medicine by using mathematical algorithms and computational approaches. There are now several applications of ML for epilepsy, including neuroimaging analyses. For precise and reliable clinical applications in epilepsy and neuroimaging, the diverse ML methodologies should be examined and validated. We review the clinical applications of ML models for brain imaging in epilepsy obtained from a PubMed database search in February 2021. We first present an overview of typical neuroimaging modalities and ML models used in the epilepsy studies and then focus on the existing applications of ML models for brain imaging in epilepsy based on the following clinical aspects: (i) distinguishing individuals with epilepsy from healthy controls, (ii) lateralization of the temporal lobe epilepsy focus, (iii) the identification of epileptogenic foci, (iv) the prediction of clinical outcomes, and (v) brain-age prediction. We address the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan.,Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
36
|
Kerr WT, Lee JK, Karimi AH, Tatekawa H, Hickman LB, Connerney M, Sreenivasan SS, Dubey I, Allas CH, Smith JM, Savic I, Silverman DHS, Hadjiiski LM, Beimer NJ, Stacey WC, Cohen MS, Engel J, Feusner JD, Salamon N, Stern JM. A minority of patients with functional seizures have abnormalities on neuroimaging. J Neurol Sci 2021; 427:117548. [PMID: 34216975 DOI: 10.1016/j.jns.2021.117548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Functional seizures often are managed incorrectly as a diagnosis of exclusion. However, a significant minority of patients with functional seizures may have abnormalities on neuroimaging that typically are associated with epilepsy, leading to diagnostic confusion. We evaluated the rate of epilepsy-associated findings on MRI, FDG-PET, and CT in patients with functional seizures. METHODS We studied radiologists' reports from neuroimages at our comprehensive epilepsy center from a consecutive series of patients diagnosed with functional seizures without comorbid epilepsy from 2006 to 2019. We summarized the MRI, FDG-PET, and CT results as follows: within normal limits, incidental findings, unrelated findings, non-specific abnormalities, post-operative study, epilepsy risk factors (ERF), borderline epilepsy-associated findings (EAF), and definitive EAF. RESULTS Of the 256 MRIs, 23% demonstrated ERF (5%), borderline EAF (8%), or definitive EAF (10%). The most common EAF was hippocampal sclerosis, with the majority of borderline EAF comprising hippocampal atrophy without T2 hyperintensity or vice versa. Of the 87 FDG-PETs, 26% demonstrated borderline EAF (17%) or definitive EAF (8%). Epilepsy-associated findings primarily included focal hypometabolism, especially of the temporal lobes, with borderline findings including subtle or questionable hypometabolism. Of the 51 CTs, only 2% had definitive EAF. SIGNIFICANCE This large case series provides further evidence that, while uncommon, EAF are seen in patients with functional seizures. A significant portion of these abnormal findings are borderline. The moderately high rate of these abnormalities may represent framing bias from the indication of the study being "seizures," the relative subtlety of EAF, or effects of antiseizure medications.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - John K Lee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hiroyuki Tatekawa
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - L Brian Hickman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Internal Medicine, University of California at Irvine, Irvine, CA, USA
| | - Michael Connerney
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Ishita Dubey
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Corinne H Allas
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jena M Smith
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ivanka Savic
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Daniel H S Silverman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Lubomir M Hadjiiski
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Beimer
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - William C Stacey
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mark S Cohen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Departments of Bioengineering, Psychology and Biomedical Physics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Noriko Salamon
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
37
|
Akyüz E, Üner AK, Köklü B, Arulsamy A, Shaikh MF. Cardiorespiratory findings in epilepsy: A recent review on outcomes and pathophysiology. J Neurosci Res 2021; 99:2059-2073. [PMID: 34109651 DOI: 10.1002/jnr.24861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Epilepsy is a debilitating disorder of uncontrollable recurrent seizures that occurs as a result of imbalances in the brain excitatory and inhibitory neuronal signals, that could stem from a range of functional and structural neuronal impairments. Globally, nearly 70 million people are negatively impacted by epilepsy and its comorbidities. One such comorbidity is the effect epilepsy has on the autonomic nervous system (ANS), which plays a role in the control of blood circulation, respiration and gastrointestinal function. These epilepsy-induced impairments in the circulatory and respiratory systems may contribute toward sudden unexpected death in epilepsy (SUDEP). Although, various hypotheses have been proposed regarding the role of epilepsy on ANS, the linking pathological mechanism still remains unclear. Channelopathies and seizure-induced damages in ANS-control brain structures were some of the causal/pathological candidates of cardiorespiratory comorbidities in epilepsy patients, especially in those who were drug resistant. However, emerging preclinical research suggest that neurotransmitter/receptor dysfunction and synaptic changes in the ANS may also contribute to the epilepsy-related autonomic disorders. Thus, pathological mechanisms of cardiorespiratory dysfunction should be elucidated by considering the modifications in anatomy and physiology of the autonomic system caused by seizures. In this regard, we present a comprehensive review of the current literature, both clinical and preclinical animal studies, on the cardiorespiratory findings in epilepsy and elucidate the possible pathological mechanisms of these findings, in hopes to prevent SUDEP especially in patients who are drug resistant.
Collapse
Affiliation(s)
- Enes Akyüz
- Department of Biophysics, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Arda Kaan Üner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Betül Köklü
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
38
|
Paek AY, Brantley JA, Evans BJ, Contreras-Vidal JL. Concerns in the Blurred Divisions between Medical and Consumer Neurotechnology. IEEE SYSTEMS JOURNAL 2021; 15:3069-3080. [PMID: 35126800 PMCID: PMC8813044 DOI: 10.1109/jsyst.2020.3032609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurotechnology has traditionally been central to the diagnosis and treatment of neurological disorders. While these devices have initially been utilized in clinical and research settings, recent advancements in neurotechnology have yielded devices that are more portable, user-friendly, and less expensive. These improvements allow laypeople to monitor their brain waves and interface their brains with external devices. Such improvements have led to the rise of wearable neurotechnology that is marketed to the consumer. While many of the consumer devices are marketed for innocuous applications, such as use in video games, there is potential for them to be repurposed for medical use. How do we manage neurotechnologies that skirt the line between medical and consumer applications and what can be done to ensure consumer safety? Here, we characterize neurotechnology based on medical and consumer applications and summarize currently marketed uses of consumer-grade wearable headsets. We lay out concerns that may arise due to the similar claims associated with both medical and consumer devices, the possibility of consumer devices being repurposed for medical uses, and the potential for medical uses of neurotechnology to influence commercial markets related to employment and self-enhancement.
Collapse
Affiliation(s)
- Andrew Y Paek
- Department of Electrical & Computer Engineering and the IUCRC BRAIN Center at the University of Houston, Houston, TX, USA
| | - Justin A Brantley
- Department of Electrical & Computer Engineering and the IUCRC BRAIN Center at the University of Houston. He is now with the Department of Bioengineering at the University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara J Evans
- Law Center and IUCRC BRAIN Center at the University of Houston. University of Houston, Houston, TX. She is now with the Wertheim College of Engineering and Levin College of Law at the University of Florida, Gainesville, FL, USA
| | - Jose L Contreras-Vidal
- Department of Electrical & Computer Engineering and the IUCRC BRAIN Center at the University of Houston, Houston, TX, USA
| |
Collapse
|
39
|
Classifying epilepsy pragmatically: Past, present, and future. J Neurol Sci 2021; 427:117515. [PMID: 34174531 PMCID: PMC7613525 DOI: 10.1016/j.jns.2021.117515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/31/2023]
Abstract
The classification of epilepsy is essential for people with epilepsy and their families, healthcare providers, physicians and researchers. The International League Against Epilepsy proposed updated seizure and epilepsy classifications in 2017, while another four-dimensional epilepsy classification was updated in 2019. An Integrated Epilepsy Classification system was proposed in 2020. Existing classifications, however, lack consideration of important pragmatic factors relevant to the day-to-day life of people with epilepsy and stakeholders. Despite promising developments, consideration of comorbidities in brain development, genetic causes, and environmental triggers of epilepsy remains largely user-dependent in existing classifications. Demographics of epilepsy have changed over time, while existing classification schemes exhibit caveats. A pragmatic classification scheme should incorporate these factors to provide a nuanced classification. Validation across disparate contexts will ensure widespread applicability and ease of use. A team-based approach may simplify communication between healthcare personnel, while an individual-centred perspective may empower people with epilepsy. Together, incorporating these elements into a modern but pragmatic classification scheme may ensure optimal care for people with epilepsy by emphasising cohesiveness among its myriad users. Technological advancements such as 7T MRI, next-generation sequencing, and artificial intelligence may affect future classification efforts.
Collapse
|
40
|
Consales A, Casciato S, Asioli S, Barba C, Caulo M, Colicchio G, Cossu M, de Palma L, Morano A, Vatti G, Villani F, Zamponi N, Tassi L, Di Gennaro G, Marras CE. The surgical treatment of epilepsy. Neurol Sci 2021; 42:2249-2260. [PMID: 33797619 DOI: 10.1007/s10072-021-05198-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
In 2009, the Commission for Epilepsy Surgery of the Italian League Against Epilepsy (LICE) conducted an overview about the techniques used for the pre-surgical evaluation and the surgical treatment of epilepsies. The recognition that, in selected cases, surgery can be considered the first-line approach, suggested that the experience gained by the main Italian referral centers should be pooled in order to provide a handy source of reference. In light of the progress made over these past years, some parts of that first report have accordingly been updated. The present revision aims to harmonize the general principles regulating the patient selection and the pre-surgical work-up, as well as to expand the use of epilepsy surgery, that still represents an underutilized resource, regrettably. The objective of this contribution is drawing up a methodological framework within which to integrate the experiences of each group in this complex and dynamic sector of the neurosciences.
Collapse
Affiliation(s)
- Alessandro Consales
- Division of Neurosurgery, IRCCS Giannina Gaslini Children's Hospital, Genoa, Italy
| | - Sara Casciato
- Epilepsy Surgery Centre, IRCCS Neuromed, Via Atinense, 18, 86170, Pozzilli, IS, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology "M. Malpighi", Bellaria Hospital, Bologna, Italy
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University, Chieti, Italy
| | | | - Massimo Cossu
- "C. Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Luca de Palma
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital, Rome, Italy
| | - Alessandra Morano
- Department of Human Neurosciences, "Sapienza" University, Rome, Italy
| | - Giampaolo Vatti
- Department of Neurological and Sensorial Sciences, University of Siena, Siena, Italy
| | - Flavio Villani
- Division of Neurophysiology and Epilepsy Centre, IRCCS San Martino Policlinic Hospital, Genoa, Italy
| | - Nelia Zamponi
- Child Neuropsychiatric Unit, University of Ancona, Ancona, Italy
| | - Laura Tassi
- "C. Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Giancarlo Di Gennaro
- Epilepsy Surgery Centre, IRCCS Neuromed, Via Atinense, 18, 86170, Pozzilli, IS, Italy.
| | - Carlo Efisio Marras
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital, Rome, Italy
| |
Collapse
|
41
|
Specchio N, Pepi C, De Palma L, Trivisano M, Vigevano F, Curatolo P. Neuroimaging and genetic characteristics of malformation of cortical development due to mTOR pathway dysregulation: clues for the epileptogenic lesions and indications for epilepsy surgery. Expert Rev Neurother 2021; 21:1333-1345. [PMID: 33754929 DOI: 10.1080/14737175.2021.1906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Malformation of cortical development (MCD) is strongly associated with drug-resistant epilepsies for which surgery to remove epileptogenic lesions is common. Two notable technological advances in this field are identification of the underlying genetic cause and techniques in neuroimaging. These now question how presurgical evaluation ought to be approached for 'mTORpathies.'Area covered: From review of published primary and secondary articles, the authors summarize evidence to consider focal cortical dysplasia (FCD), tuber sclerosis complex (TSC), and hemimegalencephaly (HME) collectively as MCD mTORpathies. The authors also consider the unique features of these related conditions with particular focus on the practicalities of using neuroimaging techniques currently available to define surgical targets and predict post-surgical outcome. Ultimately, the authors consider the surgical dilemmas faced for each condition.Expert opinion: Considering FCD, TSC, and HME collectively as mTORpathies has some merit; however, a unified approach to presurgical evaluation would seem unachievable. Nevertheless, the authors believe combining genetic-centered classification and morphologic findings using advanced imaging techniques will eventually form the basis of a paradigm when considering candidacy for early surgery.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Chiara Pepi
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Luca De Palma
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
42
|
Abstract
More than one million people in the United States suffer from seizures that are not controlled with antiseizure medications. Targeted interventions such as surgery and deep brain stimulation can confer seizure reduction or even freedom in many of these patients with drug-resistant epilepsy, but success critically depends on identification of epileptogenic zones through MR imaging. Ultrahigh field imaging facilitates improved sensitivity and resolution across many imaging modalities and may facilitate better detection of epileptic markers than is achieved at lower field strengths. The increasing availability and clinical adoption of ultrahigh field scanners play an important role in characterizing drug-resistant epilepsy and planning for its treatment.
Collapse
Affiliation(s)
- Gaurav Verma
- Biomedical Engineering and Imaging Institute, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| | - Bradley N Delman
- Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029, USA
| | - Priti Balchandani
- Biomedical Engineering and Imaging Institute, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029, USA
| |
Collapse
|
43
|
Birk D, Noachtar S, Kaufmann E. Kopfschmerz bei Parietal- und Okzipitallappenepilepsien. ZEITSCHRIFT FÜR EPILEPTOLOGIE 2021; 34:86-92. [DOI: 10.1007/s10309-020-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 08/30/2023]
Abstract
ZusammenfassungEpilepsiepatienten leiden überdurchschnittlich häufig unter Kopfschmerzen. Dies gilt insbesondere für Patienten mit idiopathisch generalisierten und parietookzipitalen Epilepsien. Die Häufigkeit des gemeinsamen Auftretens von Kopfschmerzen und Epilepsie überschreitet dabei die rechnerische Koinzidenz, sodass von einer Komorbidität beider Syndrome auszugehen ist. Bestärkt wird diese Hypothese durch überlappende genetische Veränderungen sowie gemeinsame pathophysiologische Mechanismen. Bis zu 62 % der Patienten mit z. B. Parietal- und Okzipitallappenepilepsie (POLE) geben Kopfschmerzen an. Diese treten v. a. nach dem Anfall (postiktal) auf und manifestieren sich am häufigsten als Migräne-ähnlicher Kopfschmerz oder Spannungskopfschmerz. Seltener kommt es zu Kopfschmerzen vor (periiktal), während (iktal) oder zwischen (interiktal) epileptischen Anfällen. Bei transienten neurologischen Ausfallsymptomen mit begleitenden Kopfschmerzen ist differenzialdiagnostisch neben der Migräne an vaskuläre Ereignisse wie Synkopen oder eine transiente ischämische Attacke zu denken.
Collapse
|
44
|
Rizzi M, Gambini O, Marras CE. Posterior hypothalamus as a target in the treatment of aggression: From lesioning to deep brain stimulation. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:95-106. [PMID: 34266615 DOI: 10.1016/b978-0-12-819973-2.00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intermittent explosive disorder can be described as a severe "affective aggression" condition, for which drugs and other supportive therapies are not fully effective. In the first half of the 19th century, experimental studies progressively increased knowledge of aggressive disorders. A neurobiologic approach revealed the posterior hypothalamic region as a key structure for the modulation of aggression. In the 1960s, patients with severe aggressive disorder, frequently associated with intellectual disability, were treated by bilateral stereotactic lesioning of the posterior hypothalamic area, with efficacy. This therapy was later abandoned because of issues related to the misuse of psychosurgery. In the last 2 decades, however, the same diencephalic target has been selected for the reversible treatment by deep brain stimulation, with success. This chapter presents a comprehensive approach to posterior hypothalamic surgery for the treatment of severely aggressive patients and discusses the experimental steps that allowed this surgical target to be selected. Surgical experiences are reported, together with considerations on target features and related encephalic circuits.
Collapse
Affiliation(s)
- Michele Rizzi
- "C.Munari" Epilepsy Surgery Center, Department of Neuroscience, ASST GOM Niguarda, Milan, Italy.
| | - Orsola Gambini
- Department of Health of Sciences, University of Milan, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
45
|
Kaewchur T, Chamroonrat W, Thientunyakit T, Khiewvan B, Wongsurawat N, Chotipanich C, Chinvarun Y, Bunyaratavej K, Amnuaywattakorn S, Poon-Iad N, Sontrapornpol T, Pasawang P, Tepmongkol S. Thai National Guideline for Nuclear Medicine Investigations in Epilepsy. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2021; 9:188-206. [PMID: 34250150 PMCID: PMC8255518 DOI: 10.22038/aojnmb.2021.54567.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/20/2021] [Accepted: 04/17/2021] [Indexed: 11/06/2022]
Abstract
Epilepsy is a disorder of the brain, which is characterized by recurrent epileptic seizures. These patients are generally treated with antiepileptic drugs. However, more than 30% of the patients become medically intractable and undergo a series of investigations to define candidates for epilepsy surgery. Nuclear Medicine studies using Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) radiopharmaceuticals are among the investigations used for this purpose. Since available guidelines for the investigation of surgical candidates are not up-to-date, The Nuclear Medicine Society of Thailand, The Neurological Society of Thailand, The Royal College of Neurological Surgeons of Thailand, and The Thai Medical Physicist Society has collaborated to develop this Thai national guideline for Nuclear Medicine study in epilepsy. The guideline focuses on the use of brain perfusion SPECT and F-18 fluorodeoxyglucose PET (FDG-PET), the mainly used methods in day-to-day practice. This guideline aims for effective use of Nuclear Medicine investigations by referring physicians e.g. epileptologists and neurologists, radiologists, nuclear medicine physicians, medical physicists, nuclear medicine technologists and technicians.
Collapse
Affiliation(s)
- Tawika Kaewchur
- Department of Radiology, PET/CT and Cyclotron Center, Chiang Mai University, Chiang Mai, Thailand
| | - Wichana Chamroonrat
- Division of Nuclear Medicine, Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanyaluck Thientunyakit
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Benjapa Khiewvan
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nantaporn Wongsurawat
- Division of Nuclear Medicine, Department of Radiology, Khon Kaen University, Khon Kaen, Thailand
| | | | - Yotin Chinvarun
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | | | - Sasithorn Amnuaywattakorn
- Division of Nuclear Medicine, Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nucharee Poon-Iad
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanawat Sontrapornpol
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Panya Pasawang
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Supatporn Tepmongkol
- Nuclear Medicine Division, Department of Radiology, Chulalongkorn University, Rama IV Rd, Pathumwan, Bangkok, Thailand
| |
Collapse
|
46
|
Zhang Y, Dou W, Zuo Z, You H, Lv Y, Hou B, Shi L, Feng F. Brain volume and perfusion asymmetry in temporal lobe epilepsy with and without hippocampal sclerosis. Neurol Res 2020; 43:299-306. [PMID: 33320070 DOI: 10.1080/01616412.2020.1853988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objectives: To detect and compare the features of interictal perfusion and volume asymmetry between temporal lobe epilepsy (TLE) patients with and without hippocampal sclerosis (HS).Methods: Sixty-one TLE patients (mean age 28.4 ± 9.3 years; 28 female/33 male) with unilateral signs of HS (TLE-HS+) and 25 TLE patients (mean age 29.8 ± 8.0 years; 17 female/8 male) without HS (TLE-HS-) were included. Thirty healthy volunteers served as controls (mean age 26.0 ± 8.7 years; 22 female/8 male). Brain segmentation and volume calculation were performed. Quantitative cerebral blood flow (CBF) values were measured based on arterial spin labeling (ASL). The asymmetry indices (AIs) of volume and perfusion were calculated.Results: TLE-HS+ (adjusted P = 0.001) and TLE-HS- patients (adjusted P = 0.006) had significantly higher hippocampal perfusion AIs than controls. TLE-HS+ and TLE-HS- had similar hippocampal perfusion AIs (adjusted P = 1.00). TLE-HS+ had higher hippocampal volume AIs than TLE-HS- and controls (adjusted P < 0.001). TLE-HS- and controls had similar hippocampal volume AIs (adjusted P = 1.00). All (100%) TLE-HS+ patients had positive hippocampal perfusion or volume AIs. No significant correlation between the AIs of hippocampal perfusion and volume was found in both TLE-HS+(P = 0.894) and TLE-HS- (P = 0.106) patients. TLE-HS+ patients demonstrated more extensive whole-brain asymmetry of both perfusion and volume than TLE-HS- patients.Conclusion: TLE-HS+ and TLE-HS- patients have different patterns of whole-brain perfusion and volume asymmetry. Hippocampal perfusion asymmetry was revealed in both TLE-HS+ and TLE-HS- patients.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanchen Dou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhentao Zuo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuelei Lv
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,BrainNow Medical Technology Limited, Hong Kong Science and Technology Park, Hong Kong, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Davis KM, Ryan JL, Aaron VD, Sims JB. PET and SPECT Imaging of the Brain: History, Technical Considerations, Applications, and Radiotracers. Semin Ultrasound CT MR 2020; 41:521-529. [PMID: 33308491 DOI: 10.1053/j.sult.2020.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Advances in nuclear medicine have revolutionized our ability to accurately diagnose patients with a wide array of neurologic pathologies and provide appropriate therapy. The development of new radiopharmaceuticals has made possible the identification of regional differences in brain tissue composition and metabolism. In addition, the evolution of 3-dimensional molecular imaging followed by fusion with computed tomography and magnetic resonance imaging have allowed for more precise localization of pathologies. This review will introduce single photon emission computed tomography and positron emission tomographic imaging of the brain, including the history of their development, technical considerations, and a brief overview of pertinent radiopharmaceuticals and their applications.
Collapse
Affiliation(s)
- Korbin M Davis
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, IN.
| | - Joshua L Ryan
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, IN
| | - Vasantha D Aaron
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, IN
| | - Justin B Sims
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, IN
| |
Collapse
|
48
|
Ravina K, Lin L, Liu CY, Thomas D, Hasson D, Wang LV, Russin JJ. Prospects of Photo- and Thermoacoustic Imaging in Neurosurgery. Neurosurgery 2020; 87:11-24. [PMID: 31620798 DOI: 10.1093/neuros/nyz420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022] Open
Abstract
The evolution of neurosurgery has been, and continues to be, closely associated with innovations in technology. Modern neurosurgery is wed to imaging technology and the future promises even more dependence on anatomic and, perhaps more importantly, functional imaging. The photoacoustic phenomenon was described nearly 140 yr ago; however, biomedical applications for this technology have only recently received significant attention. Light-based photoacoustic and microwave-based thermoacoustic technologies represent novel biomedical imaging modalities with broad application potential within and beyond neurosurgery. These technologies offer excellent imaging resolution while generally considered safer, more portable, versatile, and convenient than current imaging technologies. In this review, we summarize the current state of knowledge regarding photoacoustic and thermoacoustic imaging and their potential impact on the field of neurosurgery.
Collapse
Affiliation(s)
- Kristine Ravina
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Charles Y Liu
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.,Tianqiao and Chrissy Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, California
| | - Debi Thomas
- Department of Surgery, University of California Davis, Davis, California
| | - Denise Hasson
- Division of Critical Care Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | - Jonathan J Russin
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
49
|
Tang Y, Liao G, Li J, Long T, Li Y, Feng L, Chen D, Tang B, Hu S. FDG-PET Profiles of Extratemporal Metabolism as a Predictor of Surgical Failure in Temporal Lobe Epilepsy. Front Med (Lausanne) 2020; 7:605002. [PMID: 33425950 PMCID: PMC7793721 DOI: 10.3389/fmed.2020.605002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Objective: Metabolic abnormality in the extratemporal area on fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) is not an uncommon finding in drug-resistant temporal lobe epilepsy (TLE), however the correlation between extratemporal metabolic abnormalities and surgical long-term prognosis has not been fully elucidated. We aim to investigate FDG-PET extratemporal metabolic profiles predictive of failure in surgery for TLE patients. Methods: Eighty-two patients with unilateral TLE (48 female, 34 male; 25.6 ± 10.6 years old; 37 left TLE, 45 right TLE) and 30 healthy age-matched controls were enrolled. Patients were classified either as experiencing seizure-recurrence (SZR, Engel class II through IV) or seizure-free (SZF, Engel class I) at least 1 year after surgery. Regional cerebral metabolism was evaluated by FDG-PET with statistical parametric mapping (SPM12). Abnormal metabolic profiles and patterns on FDG-PET in SZR group were evaluated and compared with those of healthy control and SZF subjects on SPM12. Volume and intensity as well as special brain areas of abnormal metabolism in temporal and extratemporal regions were quantified and visualized. Results: With a median follow-up of 1.5 years, 60% of patients achieved Engel class I (SZF). SZR was associated with left TLE and widespread hypometabolism in FDG-PET visual assessment (both p < 0.05). All patients had hypometabolism in the ipsilateral temporal lobe but SZR was not correlated with volume or intensity of temporal hypometabolism (median, 1,456 vs. 1,040 mm3; p > 0.05). SZR was correlated with extratemporal metabolic abnormalities that differed according to lateralization: in right TLE, SZR exhibited larger volume in extratemporal areas compared to SZF (median, 11,060 vs. 2,112 mm3; p < 0.05). Surgical failure was characterized by Cingulum_Ant_R/L, Frontal_Inf_Orb_R abnormal metabolism in extratemporal regions. In left TLE, SZR presented a larger involvement of extratemporal areas similar to right TLE but with no significant (median, 5,873 vs. 3,464 mm3; p > 0.05), Cingulum_Ant_ R/L, Parietal_Inf_L, Postcentral_L, and Precuneus_R involved metabolic abnormalities were correlated with SZR. Conclusions: Extratemporal metabolic profiles detected by FDG-PET may indicate a prominent cause of TLE surgery failure and should be considered in predictive models for epilepsy surgery. Seizure control after surgery might be improved by investigating extratemporal areas as candidates for resection or neuromodulation.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guang Liao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Long
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yulai Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Liu T, Liang H, Cui J, Sun K, Zhang S, Yuan L, Wang Y, Xue R, Liang S. Clinical Application of 7T Magnetic Resonance Imaging in Patients with Focal Cortical Dysplasia IIa and Epilepsy. Stereotact Funct Neurosurg 2020; 99:212-220. [PMID: 33311023 DOI: 10.1159/000511152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Focal cortical dysplasia (FCD) is one of the most important pathogenic findings in patients with extratemporal lobe epilepsy. Magnetic resonance imaging (MRI)-negative is the most important negative factor to predict postoperative seizure freedom; however, FCD-I and part of FCD-IIa are MRI-negative on routine MRI. OBJECTIVES To explore the diagnostic values of 7T MRI and its new scan sequences in epilepsy patients with FCD-IIa. METHODS To include patients with focal seizure and suspicious focal abnormal imaging on 3T MRI during preoperative evaluation and perform a 7T MRI scan with white matter-suppressed (WMS) and gray-white matter tissue border enhancement (GWBE) sequences, resective epilepsy surgery, and postoperative pathological finding of FCD-IIa. The preoperative qualitative and localization significance of 7T MRI and 3T MRI in lesions with FCD-IIa was compared, and then, the imaging characteristics of lesions with FCD-IIa on 7T MRI were analyzed. RESULTS Ten cases were enrolled in this study. Seven tesla MRI presented high spatial resolutions and a high signal-to-noise ratio. WMS and GWBE could selectively suppress the signal of special tissue and improved the possibility of FCD findings. FCD-IIa showed abnormal thickness of gray matter and a blurring border and was hypointense on 7T MRI compared with 3T MRI. Seven patients showed improvement in the qualitative diagnosis strength grade of FCD, and 6 subjects showed improvement in the localization strength grade of the lesion border after careful reading of the 7T MR images. Significant differences were found in the qualitative diagnosis of FCD (p < 0.05) and localization of the lesion border (p < 0.05) between the neuroimaging diagnoses based on 3T MRI and the findings based on 7T MRI. CONCLUSION 7T MRI with WMS and GWBE sequences shows application value in the preoperative imaging diagnosis of lesions with FCD-IIa in epilepsy patients.
Collapse
Affiliation(s)
- Tinghong Liu
- Functional Neurosurgery Department, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huilou Liang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianfei Cui
- Neurosurgery Department, Luoyang Center Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Kaibao Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shaohui Zhang
- Neurosurgery Department, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Liu Yuan
- Neurosurgery Department, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yangshuo Wang
- Functional Neurosurgery Department, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China, .,University of Chinese Academy of Sciences, Beijing, China, .,Beijing Institute for Brain Disorders, Beijing, China,
| | - Shuli Liang
- Functional Neurosurgery Department, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|