1
|
Rodríguez LC, Foressi NN, Celej MS. Liquid-liquid phase separation of tau and α-synuclein: A new pathway of overlapping neuropathologies. Biochem Biophys Res Commun 2024; 741:151053. [PMID: 39612640 DOI: 10.1016/j.bbrc.2024.151053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Liquid-liquid phase separation (LLPS) is a critical phenomenon that leads to the formation of liquid-like membrane-less organelles within cells. Advances in our understanding of condensates reveal their significant roles in biology and highlight how their dysregulation may contribute to disease. Recent evidence indicates that the high protein concentration in coacervates may lead to abnormal protein aggregation associated with several neurodegenerative diseases. The presence of condensates containing multiple amyloidogenic proteins may play a role in the co-deposition and comorbidity seen in neurodegeneration. This review first provides a brief overview of the physicochemical bases and molecular determinants of LLPS. It then summarizes our understanding of Tau and α-synuclein (AS) phase separation, key proteins in Alzheimer's and Parkinson's diseases. By integrating recent findings on complex Tau and AS coacervation, this article offers a fresh perspective on how LLPS may contribute to the pathological overlap in neurodegenerative disorders and provide a novel therapeutic target to mitigate or prevent such conditions.
Collapse
Affiliation(s)
- Leandro Cruz Rodríguez
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Nahuel N Foressi
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - M Soledad Celej
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
2
|
Chassé M, Vasdev N. Emerging targets for positron emission tomography imaging in proteinopathies. NPJ IMAGING 2024; 2:30. [PMID: 39185440 PMCID: PMC11338821 DOI: 10.1038/s44303-024-00032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Positron emission tomography (PET) imaging of neurodegenerative disease has historically focused on a small number of established targets. The development of selective PET radiotracers for novel biological targets enables new ways to interrogate the neuropathology of proteinopathies and will advance our understanding of neurodegeneration. This perspective aims to highlight recent PET radiotracers developed for five emerging targets in proteinopathies (i.e., mHTT, BACE1, TDP-43, OGA, and CH24H).
Collapse
Affiliation(s)
- Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
3
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
4
|
Jácome D, Cotrufo T, Andrés-Benito P, Lidón L, Martí E, Ferrer I, Del Río JA, Gavín R. miR-519a-3p, found to regulate cellular prion protein during Alzheimer's disease pathogenesis, as a biomarker of asymptomatic stages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167187. [PMID: 38653354 DOI: 10.1016/j.bbadis.2024.167187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Clinical relevance of miRNAs as biomarkers is growing due to their stability and detection in biofluids. In this, diagnosis at asymptomatic stages of Alzheimer's disease (AD) remains a challenge since it can only be made at autopsy according to Braak NFT staging. Achieving the objective of detecting AD at early stages would allow possible therapies to be addressed before the onset of cognitive impairment. Many studies have determined that the expression pattern of some miRNAs is dysregulated in AD patients, but to date, none has been correlated with downregulated expression of cellular prion protein (PrPC) during disease progression. That is why, by means of cross studies of miRNAs up-regulated in AD with in silico identification of potential miRNAs-binding to 3'UTR of human PRNP gene, we selected miR-519a-3p for our study. Then, in vitro experiments were carried out in two ways. First, we validated miR-519a-3p target on 3'UTR-PRNP, and second, we analyzed the levels of PrPC expression after using of mimic technology on cell culture. In addition, RT-qPCR was performed to analyzed miR-519a-3p expression in human cerebral samples of AD at different stages of disease evolution. Additionally, samples of other neurodegenerative diseases such as other non-AD tauopathies and several synucleinopathies were included in the study. Our results showed that miR-519a-3p overlaps with PRNP 3'UTR in vitro and promotes downregulation of PrPC. Moreover, miR-519a-3p was found to be up-regulated exclusively in AD samples from stage I to VI, suggesting its potential use as a novel label of preclinical stages of the disease.
Collapse
Affiliation(s)
- Dayaneth Jácome
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.
| | - Tiziana Cotrufo
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| | - Pol Andrés-Benito
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain; Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| | - Eulàlia Martí
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Functional Genomics of Neurodegenerative Diseases, Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain; CIBERESP (Centro en Red de Epidemiología y Salud Pública), Spain.
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| |
Collapse
|
5
|
Takahashi H, Bhagwagar S, Nies SH, Ye H, Han X, Chiasseu MT, Wang G, Mackenzie IR, Strittmatter SM. Reduced progranulin increases tau and α-synuclein inclusions and alters mouse tauopathy phenotypes via glucocerebrosidase. Nat Commun 2024; 15:1434. [PMID: 38365772 PMCID: PMC10873339 DOI: 10.1038/s41467-024-45692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Comorbid proteinopathies are observed in many neurodegenerative disorders including Alzheimer's disease (AD), increase with age, and influence clinical outcomes, yet the mechanisms remain ill-defined. Here, we show that reduction of progranulin (PGRN), a lysosomal protein associated with TDP-43 proteinopathy, also increases tau inclusions, causes concomitant accumulation of α-synuclein and worsens mortality and disinhibited behaviors in tauopathy mice. The increased inclusions paradoxically protect against spatial memory deficit and hippocampal neurodegeneration. PGRN reduction in male tauopathy attenuates activity of β-glucocerebrosidase (GCase), a protein previously associated with synucleinopathy, while increasing glucosylceramide (GlcCer)-positive tau inclusions. In neuronal culture, GCase inhibition enhances tau aggregation induced by AD-tau. Furthermore, purified GlcCer directly promotes tau aggregation in vitro. Neurofibrillary tangles in human tauopathies are also GlcCer-immunoreactive. Thus, in addition to TDP-43, PGRN regulates tau- and synucleinopathies via GCase and GlcCer. A lysosomal PGRN-GCase pathway may be a common therapeutic target for age-related comorbid proteinopathies.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Sanaea Bhagwagar
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah H Nies
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074, Tübingen, Germany
| | - Hongping Ye
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Marius T Chiasseu
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Guilin Wang
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA.
| |
Collapse
|
6
|
De Marchi F, Munitic I, Vidatic L, Papić E, Rački V, Nimac J, Jurak I, Novotni G, Rogelj B, Vuletic V, Liscic RM, Cannon JR, Buratti E, Mazzini L, Hecimovic S. Overlapping Neuroimmune Mechanisms and Therapeutic Targets in Neurodegenerative Disorders. Biomedicines 2023; 11:2793. [PMID: 37893165 PMCID: PMC10604382 DOI: 10.3390/biomedicines11102793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Many potential immune therapeutic targets are similarly affected in adult-onset neurodegenerative diseases, such as Alzheimer's (AD) disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), as well as in a seemingly distinct Niemann-Pick type C disease with primarily juvenile onset. This strongly argues for an overlap in pathogenic mechanisms. The commonly researched immune targets include various immune cell subsets, such as microglia, peripheral macrophages, and regulatory T cells (Tregs); the complement system; and other soluble factors. In this review, we compare these neurodegenerative diseases from a clinical point of view and highlight common pathways and mechanisms of protein aggregation, neurodegeneration, and/or neuroinflammation that could potentially lead to shared treatment strategies for overlapping immune dysfunctions in these diseases. These approaches include but are not limited to immunisation, complement cascade blockade, microbiome regulation, inhibition of signal transduction, Treg boosting, and stem cell transplantation.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Eliša Papić
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Igor Jurak
- Molecular Virology Laboratory, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Gabriela Novotni
- Department of Cognitive Neurology and Neurodegenerative Diseases, University Clinic of Neurology, Medical Faculty, University Ss. Cyril and Methodius, 91701 Skoplje, North Macedonia;
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vladimira Vuletic
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Rajka M. Liscic
- Department of Neurology, Sachsenklinik GmbH, Muldentalweg 1, 04828 Bennewitz, Germany;
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy;
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
7
|
Mazzotta GM, Ceccato N, Conte C. Synucleinopathies Take Their Toll: Are TLRs a Way to Go? Cells 2023; 12:cells12091231. [PMID: 37174631 PMCID: PMC10177040 DOI: 10.3390/cells12091231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The misfolding and subsequent abnormal accumulation and aggregation of α-Synuclein (αSyn) as insoluble fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD) and several neurodegenerative disorders. A combination of environmental and genetic factors is linked to αSyn misfolding, among which neuroinflammation is recognized to play an important role. Indeed, a number of studies indicate that a Toll-like receptor (TLR)-mediated neuroinflammation might lead to a dopaminergic neural loss, suggesting that TLRs could participate in the pathogenesis of PD as promoters of immune/neuroinflammatory responses. Here we will summarize our current understanding on the mechanisms of αSyn aggregation and misfolding, focusing on the contribution of TLRs to the progression of α-synucleinopathies and speculating on their link with the non-motor disturbances associated with aging and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Nadia Ceccato
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
8
|
Journe‐Mallet I, Gouju J, Etcharry‐Bouyx F, Chauvire V, Guillet‐Pichon V, Scherer‐Gagou C, Prundean A, Godard S, Lecluse A, Cassereau J, Verny C, Letournel F, Codron P. Design and application of a customizable relational
DataBase
to assess clinicopathological correlations and concomitant pathology in neurodegenerative diseases. Brain Pathol 2022; 33:e13138. [PMID: 36536531 PMCID: PMC10154372 DOI: 10.1111/bpa.13138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The diagnosis of neurodegenerative diseases is made complex by the heterogenous phenotype of the patients and the regular occurrence of concomitant pathology. Studying clinicopathological correlations in autopsy series is a central approach to improve pathological prediction in clinical practice. However, such method requires a wealth of information, and the use of standard spreadsheet software is hardly suitable. To overcome this constraint, we designed a customizable and freely available neuropathology form with 456 data entry fields driven by an open-source DataBase Management Systems (DBMS) using Structured Query Language (SQL). This approach allowed us to optimize the compilation of clinical and pathological data from our brain collection (264 autopsied patients, 22,885 data points). Information was then easily retrieved using general and specific queries, facilitating the analysis of demographics, clinicopathological correlations, and incidental and concomitant proteinopathies. Tau, amyloid-β and α-synuclein incidental pathology was observed in respectively 78.1%, 42.8%, and 10.7% of all the patients. These proportions increased with age, reaching 100% for Tau pathology after 80. Concomitant proteinopathy was observed in 46.4% of the patients diagnosed with neurodegenerative diseases and prion disease. We observed a particularly high rate of co-pathology in patients with Dementia with Lewy bodies (81.3% of associated Tau and amyloid-β pathology) and Creutzfeldt-Jakob disease (68.4% of associated Tau pathology). Finally, we used specific queries to identify old cases that could meet newly defined neuropathological criteria and revised the diagnosis of a 90-year-old patient to LATE Stage 2. Increasing our understanding of clinicopathological correlations in neurodegenerative diseases is crucial given the implications in clinical diagnosis, biomarker identification and targeted therapies assessment. The precise characterization of clinical and pathological data of autopsy series remains a central approach but the large amount of generated data should encourage a more systematic use of DBMS.
Collapse
Affiliation(s)
- Isabelle Journe‐Mallet
- Laboratoire de neurobiologie et neuropathologie Centre Hospitalier Universitaire d'Angers Angers France
| | - Julien Gouju
- Laboratoire de neurobiologie et neuropathologie Centre Hospitalier Universitaire d'Angers Angers France
| | | | - Valérie Chauvire
- Centre mémoire de ressource et de recherche Centre Hospitalier Universitaire d'Angers Angers France
| | - Virginie Guillet‐Pichon
- Centre mémoire de ressource et de recherche Centre Hospitalier Universitaire d'Angers Angers France
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
- MITOVASC Univ Angers, Inserm, CNRS, SFR ICAT Angers France
| | - Clarisse Scherer‐Gagou
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
| | - Adriana Prundean
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
| | - Sophie Godard
- Unité neurovasculaire Centre Hospitalier Universitaire d'Angers Angers France
| | - Aldéric Lecluse
- Unité neurovasculaire Centre Hospitalier Universitaire d'Angers Angers France
| | - Julien Cassereau
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
- MITOVASC Univ Angers, Inserm, CNRS, SFR ICAT Angers France
- Centre de référence des maladies neuromusculaires AOC Centre Hospitalier Universitaire d'Angers Angers France
- Centre de ressources et de compétences sur la SLA Centre Hospitalier Universitaire d'Angers Angers France
| | - Christophe Verny
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
- MITOVASC Univ Angers, Inserm, CNRS, SFR ICAT Angers France
| | - Franck Letournel
- Laboratoire de neurobiologie et neuropathologie Centre Hospitalier Universitaire d'Angers Angers France
| | - Philippe Codron
- Laboratoire de neurobiologie et neuropathologie Centre Hospitalier Universitaire d'Angers Angers France
- MITOVASC Univ Angers, Inserm, CNRS, SFR ICAT Angers France
- Unité neurovasculaire Centre Hospitalier Universitaire d'Angers Angers France
- Centre de référence des maladies neuromusculaires AOC Centre Hospitalier Universitaire d'Angers Angers France
- Centre de ressources et de compétences sur la SLA Centre Hospitalier Universitaire d'Angers Angers France
| |
Collapse
|
9
|
Henríquez G, Méndez L, Castañeda E, Wagler A, Jeon S, Narayan M. Preclinical Model to Evaluate Outcomes of Amyloid Cross-Toxicity in the Rodent Brain. ACS Chem Neurosci 2022; 13:2962-2973. [PMID: 36194532 DOI: 10.1021/acschemneuro.2c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The progress of neurodegenerative disorders correlates with the spread of their associated amyloidogenic proteins. Here, we investigated whether amyloid entry into nonconstitutive neurons could drive cross-toxic outcomes. Amyloid β (Aβ) was stereotaxically introduced into the rodent midbrain tegmentum, where it is not endogenously expressed. Postinfusion, rodent motor and sensorimotor capacities were assessed by standard behavioral tests at 3, 6, 9, and 12 months. The longitudinal study revealed no behavioral abnormalities. However, Aβ insult provoked intraneuronal inclusions positive for phosphorylated α-synuclein in dopaminergic neurons and were seen throughout the midbrain, a pathognomonic biomarker suggesting Parkinson's pathogenesis. These findings not only underscore the cross-toxic potential of amyloid proteins but also provide a mechanism by which they disrupt homeostasis in nonconstitutive neurons and cause neuronal corruption, injury, and demise. This study may help reconcile the large incidence of neurodegenerative comorbidity observed clinically.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Lois Méndez
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Edward Castañeda
- Department of Psychology, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Amy Wagler
- Department of Mathematical Sciences, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Soyoung Jeon
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
10
|
Koga S, Josephs KA, Aiba I, Yoshida M, Dickson DW. Neuropathology and emerging biomarkers in corticobasal syndrome. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328586. [PMID: 35697501 PMCID: PMC9380481 DOI: 10.1136/jnnp-2021-328586] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Corticobasal syndrome (CBS) is a clinical syndrome characterised by progressive asymmetric limb rigidity and apraxia with dystonia, myoclonus, cortical sensory loss and alien limb phenomenon. Corticobasal degeneration (CBD) is one of the most common underlying pathologies of CBS, but other disorders, such as progressive supranuclear palsy (PSP), Alzheimer's disease (AD) and frontotemporal lobar degeneration with TDP-43 inclusions, are also associated with this syndrome.In this review, we describe common and rare neuropathological findings in CBS, including tauopathies, synucleinopathies, TDP-43 proteinopathies, fused in sarcoma proteinopathy, prion disease (Creutzfeldt-Jakob disease) and cerebrovascular disease, based on a narrative review of the literature and clinicopathological studies from two brain banks. Genetic mutations associated with CBS, including GRN and MAPT, are also reviewed. Clinicopathological studies on neurodegenerative disorders associated with CBS have shown that regardless of the underlying pathology, frontoparietal, as well as motor and premotor pathology is associated with CBS. Clinical features that can predict the underlying pathology of CBS remain unclear. Using AD-related biomarkers (ie, amyloid and tau positron emission tomography (PET) and fluid biomarkers), CBS caused by AD often can be differentiated from other causes of CBS. Tau PET may help distinguish AD from other tauopathies and non-tauopathies, but it remains challenging to differentiate non-AD tauopathies, especially PSP and CBD. Although the current clinical diagnostic criteria for CBS have suboptimal sensitivity and specificity, emerging biomarkers hold promise for future improvements in the diagnosis of underlying pathology in patients with CBS.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
11
|
Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol 2022; 214:102270. [DOI: 10.1016/j.pneurobio.2022.102270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
|
12
|
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of disorders without effective disease-modifying therapies. Pathologically, these disorders are characterised by disease-specific protein aggregates in neurons and/or glia and referred to as proteinopathies. Many neurodegenerative diseases show pathological overlap with the same abnormally deposited protein occurring in anatomically distinct regions, which give rise to specific patterns of cognitive and motor clinical phenotypes. Sequential distribution patterns of protein inclusions throughout the brain have been described. Rather than occurring in isolation, it is increasingly recognised that combinations of one or more proteinopathies with or without cerebrovascular disease frequently occur in individuals with neurodegenerative diseases. In addition, complex constellations of ageing-related and incidental pathologies associated with tau, TDP-43, Aβ, α-synuclein deposition have been commonly reported in longitudinal ageing studies. This review provides an overview of current classification of neurodegenerative and age-related pathologies and presents the spectrum and complexity of mixed pathologies in community-based, longitudinal ageing studies, in major proteinopathies, and genetic conditions. Mixed pathologies are commonly reported in individuals >65 years with and without cognitive impairment; however, they are increasingly recognised in younger individuals (<65 years). Mixed pathologies are thought to lower the threshold for developing cognitive impairment and dementia. Hereditary neurodegenerative diseases also show a diverse range of mixed pathologies beyond the proteinopathy primarily linked to the genetic abnormality. Cases with mixed pathologies might show a different clinical course, which has prognostic relevance and obvious implications for biomarker and therapy development, and stratifying patients for clinical trials.
Collapse
|
13
|
Kovacs GG, Ghetti B, Goedert M. Classification of Diseases with Accumulation of Tau Protein. Neuropathol Appl Neurobiol 2022; 48:e12792. [PMID: 35064600 PMCID: PMC9352145 DOI: 10.1111/nan.12792] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indiana, USA
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| |
Collapse
|
14
|
Abstract
The current nosological concept of α-synucleinopathies characterized by the presence of Lewy bodies (LBs) includes Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), and dementia with Lewy bodies (DLB), for which the term “Lewy body disease” (LBD) has recently been proposed due to their considerable clinical and pathological overlap. However, even this term does not seem to describe the true nature of this group of diseases. The subsequent discoveries of α-synuclein (αSyn), SNCA gene, and the introduction of new immunohistochemical methods have started intensive research into the molecular-biological aspects of these diseases. In light of today’s knowledge, the role of LBs in the pathogenesis and classification of these nosological entities remains somewhat uncertain. An increasingly more important role is attributed to other factors as the presence of various LBs precursors, post-translational αSyn modifications, various αSyn strains, the deposition of other pathological proteins (particularly β-amyloid), and the discovery of selective vulnerability of specific cells due to anatomical configuration or synaptic dysfunction. Resulting genetic inputs can undoubtedly be considered as the main essence of these factors. Molecular–genetic data indicate that not only in PD but also in DLB, a unique genetic architecture can be ascertained, predisposing to the development of specific disease phenotypes. The presence of LBs thus remains only a kind of link between these disorders, and the term “diseases with Lewy bodies” therefore results somewhat more accurate.
Collapse
|
15
|
Morgan R, Prosapio J, Kara S, Sonty S, Youssef P, Nedd K. Preliminary clinical diagnostic criteria for chronic traumatic encephalopathy: A case report and literature review. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Koga S, Zhou X, Murakami A, Fernandez De Castro C, Baker MC, Rademakers R, Dickson DW. Concurrent tau pathologies in frontotemporal lobar degeneration with TDP-43 pathology. Neuropathol Appl Neurobiol 2021; 48:e12778. [PMID: 34823271 PMCID: PMC9300011 DOI: 10.1111/nan.12778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Aims Accumulating evidence suggests that patients with frontotemporal lobar degeneration (FTLD) can have pathologic accumulation of multiple proteins, including tau and TDP‐43. This study aimed to determine the frequency and characteristics of concurrent tau pathology in FTLD with TDP‐43 pathology (FTLD‐TDP). Methods The study included 146 autopsy‐confirmed cases of FTLD‐TDP and 55 cases of FTLD‐TDP with motor neuron disease (FTLD‐MND). Sections from the basal forebrain were screened for tau pathology with phosphorylated‐tau immunohistochemistry. For cases with tau pathology on the screening section, additional brain sections were studied to establish a diagnosis. Genetic analysis of C9orf72, GRN and MAPT was performed on select cases. Results We found 72 cases (36%) with primary age‐related tauopathy (PART), 85 (42%) with ageing‐related tau astrogliopathy (ARTAG), 45 (22%) with argyrophilic grain disease (AGD) and 2 cases (1%) with corticobasal degeneration (CBD). Patients with ARTAG or AGD were significantly older than those without these comorbidities. One of the patients with FTLD‐TDP and CBD had C9orf72 mutation and relatively mild tau pathology, consistent with incidental CBD. Conclusion The coexistence of TDP‐43 and tau pathologies was relatively common, particularly PART and ARTAG. Although rare, patients with FTLD can have multiple neurodegenerative proteinopathies. The absence of TDP‐43‐positive astrocytic plaques may suggest that CBD and FTLD‐TDP were independent disease processes in the two patients with both tau and TDP‐43 pathologies. It remains to be determined if mixed cases represent a unique disease process or two concurrent disease processes in an individual.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Aya Murakami
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rosa Rademakers
- Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
17
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
18
|
Danics K, Forrest SL, Kapas I, Erber I, Schmid S, Törő K, Majtenyi K, Kovacs GG. Neurodegenerative proteinopathies associated with neuroinfections. J Neural Transm (Vienna) 2021; 128:1551-1566. [PMID: 34223998 PMCID: PMC8255726 DOI: 10.1007/s00702-021-02371-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 01/23/2023]
Abstract
Infectious agents, including viruses and bacteria, are proposed to be involved in the pathogenesis of Alzheimer’s disease (AD). According to this hypothesis, these agents have capacity to evade the host immune system leading to chronic infection, inflammation, and subsequent deposition of Aβ and phosphorylated-tau in the brain. Co-existing proteinopathies and age-related pathologies are common in AD and the brains of elderly individuals, but whether these are also related to neuroinfections remain to be established. This study determined the prevalence and distribution of neurodegenerative proteinopathies in patients with infection-induced acute or chronic inflammation associated with herpes simplex virus (HSV) encephalitis (n = 13) and neurosyphilis (n = 23). The mean age at death in HSV patients was 53 ± 12 years (range 24–65 years) and survival was 9 days–6 years following initial infection. The mean age at death and survival in neurosyphilis patients was 60 ± 15 years (range 36–86 years) and 1–5 years, respectively. Neuronal tau-immunoreactivity and neurites were observed in 8 HSV patients and 19 neurosyphilis patients, and in approximately half of these, this was found in regions associated with inflammation and expanding beyond regions expected from the Braak stage of neurofibrillary degeneration. Five neurosyphilis patients had cortical ageing-related tau astrogliopathy. Aβ-plaques were found in 4 HSV patients and 11 neurosyphilis patients. Lewy bodies were observed in one HSV patient and two neurosyphilis patients. TDP-43 pathology was absent. These observations provide insights into deposition of neurodegenerative proteins in neuroinfections, which might have implications for COVID-19 patients with chronic and/or post-infectious neurological symptoms and encephalitis.
Collapse
Affiliation(s)
- Krisztina Danics
- Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.,Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Shelley L Forrest
- Dementia Research Centre, School of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Istvan Kapas
- Department of Neurology, St. Janos Hospital, Budapest, Hungary
| | - Irene Erber
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Susanne Schmid
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Klára Törő
- Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Katalin Majtenyi
- Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada. .,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
19
|
Motyl JA, Strosznajder JB, Wencel A, Strosznajder RP. Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126277. [PMID: 34207975 PMCID: PMC8230587 DOI: 10.3390/ijms22126277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/22/2023] Open
Abstract
Molecular studies have provided increasing evidence that Parkinson’s disease (PD) is a protein conformational disease, where the spread of alpha-synuclein (ASN) pathology along the neuraxis correlates with clinical disease outcome. Pathogenic forms of ASN evoke oxidative stress (OS), neuroinflammation, and protein alterations in neighboring cells, thereby intensifying ASN toxicity, neurodegeneration, and neuronal death. A number of evidence suggest that homeostasis between bioactive sphingolipids with opposing function—e.g., sphingosine-1-phosphate (S1P) and ceramide—is essential in pro-survival signaling and cell defense against OS. In contrast, imbalance of the “sphingolipid biostat” favoring pro-oxidative/pro-apoptotic ceramide-mediated changes have been indicated in PD and other neurodegenerative disorders. Therefore, we focused on the role of sphingolipid alterations in ASN burden, as well as in a vast range of its neurotoxic effects. Sphingolipid homeostasis is principally directed by sphingosine kinases (SphKs), which synthesize S1P—a potent lipid mediator regulating cell fate and inflammatory response—making SphK/S1P signaling an essential pharmacological target. A growing number of studies have shown that S1P receptor modulators, and agonists are promising protectants in several neurological diseases. This review demonstrates the relationship between ASN toxicity and alteration of SphK-dependent S1P signaling in OS, neuroinflammation, and neuronal death. Moreover, we discuss the S1P receptor-mediated pathways as a novel promising therapeutic approach in PD.
Collapse
Affiliation(s)
- Joanna A. Motyl
- Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland; (J.A.M.); (A.W.)
| | - Joanna B. Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland;
| | - Agnieszka Wencel
- Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland; (J.A.M.); (A.W.)
| | - Robert P. Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland
- Correspondence:
| |
Collapse
|
20
|
Benvenutto A, Guedj E, Felician O, Eusebio A, Azulay JP, Ceccaldi M, Koric L. Clinical Phenotypes in Corticobasal Syndrome with or without Amyloidosis Biomarkers. J Alzheimers Dis 2021; 74:331-343. [PMID: 32039846 DOI: 10.3233/jad-190961] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Corticobasal syndrome (CBS) is a neuropathologically heterogeneous entity. The use of cerebrospinal fluid and amyloid biomarkers enables detection of underlying Alzheimer's disease (AD) pathology. We thus compared clinical, eye movement, and 18FDG-PET imaging characteristics in CBS in two groups of patients divided according to their amyloid biomarkers profile. Fourteen patients presenting with CBS and amyloidosis (CBS-A+) were compared with 16 CBS patients without amyloidosis (CBS-A-). The two groups showed similar motor abnormalities (parkinsonism, dystonia) and global cognitive functions. Unlike CBS-A+ patients who displayed more posterior cortical abnormalities, CBS-A- patients demonstrated more anterior cortical and brain stem dysfunctions on the basis of neuropsychological testing, study of saccade velocities and brain hypometabolism areas on 18FDG-PET. Interestingly, Dopamine Transporter SPECT imaging showed similar levels of dopaminergic degeneration in both groups. These findings confirm common and distinct brain abnormalities between the different neurodegenerative diseases that result in CBS. We demonstrate the importance of a multidisciplinary approach to improve diagnosis in vivo in particular on oculomotor examination.
Collapse
Affiliation(s)
- Agnès Benvenutto
- Department of Neurology and Neuropsychology, and CMMR PACA Ouest, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Eric Guedj
- Department of Nuclear Medecine, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,CERIMED, Aix-Marseille Univ, Marseille, France.,Aix Marseille Univ, UMR 7249, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Olivier Felician
- Department of Neurology and Neuropsychology, and CMMR PACA Ouest, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille Univ, INSERM UMR 1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders Department, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille Univ, CNRS, INT, Institut Neurosciences Timone, Marseille, France
| | - Jean-Philippe Azulay
- Department of Neurology and Movement Disorders Department, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille Univ, CNRS, INT, Institut Neurosciences Timone, Marseille, France
| | - Mathieu Ceccaldi
- Department of Neurology and Neuropsychology, and CMMR PACA Ouest, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille Univ, INSERM UMR 1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Lejla Koric
- Department of Neurology and Neuropsychology, and CMMR PACA Ouest, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, UMR 7249, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
21
|
Martinez-Valbuena I, Valenti-Azcarate R, Amat-Villegas I, Marcilla I, Marti-Andres G, Caballero MC, Riverol M, Tuñon MT, Fraser PE, Luquin MR. Mixed pathologies in pancreatic β cells from subjects with neurodegenerative diseases and their interaction with prion protein. Acta Neuropathol Commun 2021; 9:64. [PMID: 33832546 PMCID: PMC8028740 DOI: 10.1186/s40478-021-01171-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/22/2022] Open
Abstract
Protein misfolding diseases refer to a variety of disorders that develop as a consequence of the misfolding of proteins in various organs. The etiologies of Parkinson’s and Alzheimer’s disease remain unclear, but it seems that type two diabetes and other prediabetic states could contribute to the appearance of the sporadic forms of these diseases. In addition to amylin deposition, other amyloidogenic proteins implicated in the pathophysiology of neurodegenerative diseases could have important roles in the pathogenesis of this disease. As we have previously demonstrated the presence of α-synuclein deposits in the pancreas of patients with synucleinopathies, as well as tau and Aβ deposits in the pancreatic tissue of Alzheimer’s disease patients, we studied the immunoreactivity of amylin, tau and α-synuclein in the pancreas of 138 subjects with neurodegenerative diseases or type two diabetes and assessed whether the pancreatic β-cells of these subjects present cooccurrence of misfolded proteins. Furthermore, we also assessed the pancreatic expression of prion protein (PrP) in these subjects and its interaction, both in the pancreas and brain, with α-synuclein, tau, Aβ and amylin. Our study shows, for the first time, that along with amylin, pancreatic α-synuclein, Aβ, PrP and tau may contribute together to the complex pathophysiology of type two diabetes and in the appearance of insulin resistance in Alzheimer’s and Parkinson’s disease. Furthermore, we show that the same mixed pathologies that are observed in the brains of patients with neurodegenerative diseases are also present outside the nervous system. Finally, we provide the first histological evidence of an interaction between PrP and Aβ, α-synuclein, amylin or tau in the pancreas and locus coeruleus. These findings will shed more light on the common pathological pathways shared by neurodegenerative diseases and type two diabetes, benefiting the exploration of common therapeutic strategies to prevent or treat these devastating amyloid diseases.
Collapse
|
22
|
Genetics of synucleins in neurodegenerative diseases. Acta Neuropathol 2021; 141:471-490. [PMID: 32740728 DOI: 10.1007/s00401-020-02202-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The SNCA locus currently has an indisputable role in Parkinson's disease and other synucleinopathies. The role of genetic variability in the other members of the synuclein family (SNCB and SNCG) in disease is far less clear. In this review, we critically assess the pathogenicity, main characteristics, and roles of genetic variants in these genes reported to be causative of synucleinopathies. We also summarize the different association signals identified in the SNCA locus that have been associated with risk for disease. We take a bird's eye view of the variability currently reported in the general population for the three genes and use these data to infer on the potential relationship between each of the genes and human disease.
Collapse
|
23
|
Klotz S, Fischer P, Hinterberger M, Ricken G, Hönigschnabl S, Gelpi E, Kovacs GG. Multiple system aging-related tau astrogliopathy with complex proteinopathy in an oligosymptomatic octogenarian. Neuropathology 2020; 41:72-83. [PMID: 33263220 PMCID: PMC7984345 DOI: 10.1111/neup.12708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
The combination of multiple neurodegenerative proteinopathies is increasingly recognized. Together they can potentiate neuronal dysfunction and contribute to complex neurological symptoms. We report an octogenarian female case of multiple extraneural metastases of a rectal carcinoma. She attempted suicide, which ultimately led to cardiorespiratory failure nine days after hospital admission. Apart from the suicide attempt and late-onset depression, other psychiatric or neurological symptoms were not reported. Unexpectedly, histopathologic examination revealed prominent aging-related tau astrogliopathy (ARTAG) of all five types (subpial, subependymal, grey and white matter, and perivascular) affecting cortical and subcortical brain regions. This pathology was associated with intermediate Alzheimer's disease neuropathologic change (A2B2C2 score), cerebral amyloid angiopathy, Lewy body-type α-synuclein proteinopathy (Braak stage 4), and a multiple system transactivation response DNA-binding protein of 43 kDa (TDP-43) proteinopathy also involving the astroglia. In summary, we report a complex and extensive combination of multiple proteinopathies with widespread ARTAG of all five types in a patient who had attempted suicide. Although longitudinal psychometric tests and neuropsychological evaluations were not performed, this report poses the question of thresholds of cognition and pathology load, describes ARTAG affecting unusually widespread brain regions, and supports the notion that complex proteinopathies should be regarded as a frequent condition in the elderly.
Collapse
Affiliation(s)
- Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Peter Fischer
- Department of Psychiatry, Medical Research Society Vienna D.C., Danube Hospital Vienna, Vienna, Austria
| | - Margareta Hinterberger
- Department of Psychiatry, Medical Research Society Vienna D.C., Danube Hospital Vienna, Vienna, Austria
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Henríquez G, Gomez A, Guerrero E, Narayan M. Potential Role of Natural Polyphenols against Protein Aggregation Toxicity: In Vitro, In Vivo, and Clinical Studies. ACS Chem Neurosci 2020; 11:2915-2934. [PMID: 32822152 DOI: 10.1021/acschemneuro.0c00381] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the main features of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease is the amyloidogenic behavior of disease-specific proteins including amyloid β, tau, α-synuclein, and mutant Huntingtin which participate in the formation, accumulation, and deposition of toxic misfolded aggregates. Consequently, these proteins not only associated with the progress of their respective neurodegenerative pathologies but also qualify as disease-specific biomarkers. The aim of using natural polyphenols is to target amyloid-dependent proteopathies by decreasing free radical damage and inhibiting and dissolving amyloid fibrils. We explore the effectiveness of the polyphenols epigallocatechin-3-gallate, oleuropein aglycone, and quercetin on their ability to inhibit aggregation of amyloid β, tau, and α-synuclein and mitigate other pathological features for Alzheimer's disease and Parkinson's disease. The analysis was carried from in vitro and cell line studies to animal models and clinical trials. This Review describes the use of phytochemical compounds as prophylactic agents for Alzheimer's disease, Parkinson's disease, and other proteopathies.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Alejandra Gomez
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Erick Guerrero
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
25
|
Daude N, Kim C, Kang SG, Eskandari-Sedighi G, Haldiman T, Yang J, Fleck SC, Gomez-Cardona E, Han ZZ, Borrego-Ecija S, Wohlgemuth S, Julien O, Wille H, Molina-Porcel L, Gelpi E, Safar JG, Westaway D. Diverse, evolving conformer populations drive distinct phenotypes in frontotemporal lobar degeneration caused by the same MAPT-P301L mutation. Acta Neuropathol 2020; 139:1045-1070. [PMID: 32219515 PMCID: PMC7244472 DOI: 10.1007/s00401-020-02148-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/29/2023]
Abstract
Tau protein accumulation is a common denominator of major dementias, but this process is inhomogeneous, even when triggered by the same germline mutation. We considered stochastic misfolding of human tau conformers followed by templated conversion of native monomers as an underlying mechanism and derived sensitive conformational assays to test this concept. Assessments of brains from aged TgTauP301L transgenic mice revealed a prodromal state and three distinct signatures for misfolded tau. Frontotemporal lobar degeneration (FTLD)-MAPT-P301L patients with different clinical phenotypes also displayed three signatures, two resembling those found in TgTauP301L mice. As physicochemical and cell bioassays confirmed diverse tau strains in the mouse and human brain series, we conclude that evolution of diverse tau conformers is intrinsic to the pathogenesis of this uni-allelic form of tauopathy. In turn, effective therapeutic interventions in FTLD will need to address evolving repertoires of misfolded tau species rather than singular, static molecular targets.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Shelaine C Fleck
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sergi Borrego-Ecija
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
- Department of Neurology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
26
|
Abstract
Astrocytes contribute to the pathogenesis of neurodegenerative proteinopathies as influencing neuronal degeneration or neuroprotection, and also act as potential mediators of the propagation or elimination of disease-associated proteins. Protein astrogliopathies can be observed in different forms of neurodegenerative conditions. Morphological characterization of astrogliopathy is used only for the classification of tauopathies. Currently, at least six types of astrocytic tau pathologies are distinguished. Astrocytic plaques (AP), tufted astrocytes (TAs), ramified astrocytes (RA), and globular astroglial inclusions are seen predominantly in primary tauopathies, while thorn-shaped astrocytes (TSA) and granular/fuzzy astrocytes (GFA) are evaluated in aging-related tau astrogliopathy (ARTAG). ARTAG can be seen in the white and gray matter and subpial, subependymal, and perivascular locations. Some of these overlap with the features of tau pathology seen in Chronic traumatic encephalopathy (CTE). Furthermore, gray matter ARTAG shares features with primary tauopathy-related astrocytic tau pathology. Sequential distribution patterns have been described for tau astrogliopathies. Importantly, astrocytic tau pathology in primary tauopathies can be observed in brain areas without neuronal tau deposition. The various morphologies of tau astrogliopathy might reflect a role in the propagation of pathological tau protein, an early response to a yet unidentified neurodegeneration-inducing event, or, particularly for ARTAG, a response to a repeated or prolonged pathogenic process such as blood-brain barrier dysfunction or local mechanical impact. The concept of tau astrogliopathies and ARTAG facilitated communication among research disciplines and triggered the investigation of the significance of astrocytic lesions in neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
27
|
Visanji NP, Lang AE, Kovacs GG. Beyond the synucleinopathies: alpha synuclein as a driving force in neurodegenerative comorbidities. Transl Neurodegener 2019; 8:28. [PMID: 31508228 PMCID: PMC6727368 DOI: 10.1186/s40035-019-0172-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
The fundamental role that alpha-synuclein (aSyn) plays in the pathogenesis of neurodegenerative synucleinopathies, including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, is a well-accepted fact. A wealth of experimental evidence has linked this relatively small but ubiquitously expressed protein to a plethora of cytopathologic mechanisms and suggests that aSyn may be capable of seeding the progressive spread of synucleinopathy throughout the brain. Beyond the synucleinopathies, the abnormal deposition of aSyn is frequently seen in a variety of other neurodegenerative proteinopathies including Alzheimer’s disease. In spite of the fact that the frequency of concomitant aSyn pathology in these disorders is such that it can be considered the rule rather than the exception, the potential role that aSyn may have in these disorders has received relatively little attention. In this article we postulate that aSyn may in fact be a key protein in driving the pathogenic processes in neurodegenerative comorbidities. In addition to reviewing the frequency of concomitant deposition of aSyn in the neurodegenerative proteinopathies, we also consider our current understanding of the interaction of aSyn with other neurodegenerative disease-associated proteins, including tau, TDP-43, amyloid-β and prion protein, in the context of neuropathologic studies describing the anatomical sites of potential concomitant pathology. We conclude that a growing body of evidence, encompassing neuropathology studies in human brain, animal models of concomitant proteinopathies and studies employing sophisticated methods of probing protein-protein interaction, cumulatively suggest that aSyn is well positioned to exert a strong influence on the pathogenesis of the neurodegenerative comorbidities. We hope to stimulate research in this emerging field and consider that future studies exploring the contribution of aSyn to the pathogenic processes in neurodegenerative comorbidities may provide critical information pertaining to diagnosis and the development of vital disease modifying treatments for these devastating diseases.
Collapse
Affiliation(s)
- Naomi P Visanji
- 1Edmond J. Safra program in Parkinson's disease and the Morton and Gloria Shulman Movement disorders clinic, Toronto Western Hospital, Toronto, Ontario Canada
| | - Anthony E Lang
- 1Edmond J. Safra program in Parkinson's disease and the Morton and Gloria Shulman Movement disorders clinic, Toronto Western Hospital, Toronto, Ontario Canada
| | - Gabor G Kovacs
- 1Edmond J. Safra program in Parkinson's disease and the Morton and Gloria Shulman Movement disorders clinic, Toronto Western Hospital, Toronto, Ontario Canada.,2Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario Canada.,3Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario Canada
| |
Collapse
|
28
|
Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol 2019; 72:725-735. [PMID: 31395625 DOI: 10.1136/jclinpath-2019-205952] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterised by selective dysfunction and progressive loss of synapses and neurons associated with pathologically altered proteins that deposit primarily in the human brain and spinal cord. Recent discoveries have identified a spectrum of distinct immunohistochemically and biochemically detectable proteins, which serve as a basis for protein-based disease classification. Diagnostic criteria have been updated and disease staging procedures have been proposed. These are based on novel concepts which recognise that (1) most of these proteins follow a sequential distribution pattern in the brain suggesting a seeding mechanism and cell-to-cell propagation; (2) some of the neurodegeneration-associated proteins can be detected in peripheral organs; and (3) concomitant presence of neurodegeneration-associated proteins is more the rule than the exception. These concepts, together with the fact that the clinical symptoms do not unequivocally reflect the molecular pathological background, place the neuropathological examination at the centre of requirements for an accurate diagnosis. The need for quality control in biomarker development, clinical and neuroimaging studies, and evaluation of therapy trials, as well as an increasing demand for the general public to better understand human brain disorders, underlines the importance for a renaissance of postmortem neuropathological studies at this time. This review summarises recent advances in neuropathological diagnosis and reports novel aspects of relevance for general pathological practice.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Matej R, Tesar A, Rusina R. Alzheimer's disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview. Clin Biochem 2019; 73:26-31. [PMID: 31400306 DOI: 10.1016/j.clinbiochem.2019.08.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022]
Abstract
Neuropathological diagnostic criteria of neurodegenerative disorders are based on the presence of specific inclusions in a specific area of brain tissue that correlate with clinical manifestations. Concomitant neurodegenerative disorders correspond to a combination of two (or more) different fully developed diseases in the same patient. Concomitant neurodegenerative pathology represents the presence of definite neurodegeneration and deposits of pathological proteins specific for another disease, which is not, however, fully developed. Very frequent overlaps include Alzheimer's disease and alpha-synuclein inclusions. Nevertheless, careful neuropathological investigations reveal an increasing frequency of different co-pathologies in examined brains. In Alzheimer's disease, protein TDP-43 may co-aggregate, but it is not clear whether this is atypical isolated Alzheimer's disease or overlap of Alzheimer's disease with early frontotemporal lobar degeneration. Comorbidities of Alzheimer's disease and tauopathies are relatively rare. A combination of vascular pathology with primary neurodegeneration (mostly Alzheimer's disease or dementia with Lewy bodies) is historically called mixed dementia. Overlap of different neuropathologically confirmed neurodegenerations could lead to atypical and unusual clinical presentations and may be responsible for faster disease progression. Several CSF biomarkers have been evaluated for their utility in diagnostic processes in different neurodegenerative dementias; however, evidence regarding their role in neurodegenerative overlaps is still limited.
Collapse
Affiliation(s)
- Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer Hospital, Prague, Czech Republic; Department of Pathology, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Adam Tesar
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Robert Rusina
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic; Department of Neurology, Third Faculty of Medicine, Charles University, Thomayer Hospital, Prague, Czech Republic.
| |
Collapse
|
30
|
Wolfe MS. In search of pathogenic amyloid β-peptide in familial Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:71-78. [PMID: 31699328 DOI: 10.1016/bs.pmbts.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Early-onset familial Alzheimer's disease (FAD) is pathologically and clinically similar to the more common late-onset sporadic form of the disease. The study of rare genetic mutations that cause FAD should provide insight into the pathogenesis of sporadic Alzheimer's disease. FAD mutations have only been found in the substrate (amyloid precursor protein, APP) and protease (γ-secretase) that produces the amyloid-β peptide (Aβ). The secreted, aggregation-prone 42-residue Aβ peptide (Aβ42) has long been considered the pathogenic entity in Alzheimer's disease. However, recent understanding of the complexity of the processing of APP by γ-secretase and the effects of FAD mutations on this processing suggest other forms of Aβ as potentially pathogenic.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
31
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
32
|
Maguire G, Paler L, Green L, Mella R, Valcarcel M, Villace P. Rescue of degenerating neurons and cells by stem cell released molecules: using a physiological renormalization strategy. Physiol Rep 2019; 7:e14072. [PMID: 31050222 PMCID: PMC6497969 DOI: 10.14814/phy2.14072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that adult stem cell types and progenitor cells act collectively in a given tissue to maintain and heal organs, such as muscle, through a release of a multitude of molecules packaged into exosomes from the different cell types. Using this principle for the development of bioinspired therapeutics that induces homeostatic renormalization, here we show that the collection of molecules released from four cell types, including mesenchymal stem cells, fibroblast, neural stem cells, and astrocytes, rescues degenerating neurons and cells. Specifically, oxidative stress induced in a human recombinant TDP-43- or FUS-tGFP U2OS cell line by exposure to sodium arsenite was shown to be significantly reduced by our collection of molecules using in vitro imaging of FUS and TDP-43 stress granules. Furthermore, we also show that the collective secretome rescues cortical neurons from glutamate toxicity as evidenced by increased neurite outgrowth, reduced LDH release, and reduced caspase 3/7 activity. These data are the first in a series supporting the development of stem cell-based exosome systems therapeutics that uses a physiological renormalization strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Lee Paler
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Linda Green
- BioRegenerative Sciences, Inc.San DiegoCalifornia
| | | | | | | |
Collapse
|