1
|
Sun S, Zhai W, Zhang R, Cai N. Deletion of Dux ameliorates muscular dystrophy in mdx mice by attenuating oxidative stress via Nrf2. FASEB J 2024; 38:e23771. [PMID: 38989564 DOI: 10.1096/fj.202400195r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
DUX4 has been widely reported in facioscapulohumeral muscular dystrophy, but its role in Duchenne muscular dystrophy (DMD) is unclear. Dux is the mouse paralog of DUX4. In Dux-/- mdx mice, forelimb grip strength test and treadmill test were performed, and extensor digitorum longus (EDL) contraction properties were measured to assess skeletal muscle function. Pathological changes in mice were determined by serum CK and LDH levels and muscle Masson staining. Inflammatory factors, oxidative stress, and mitochondrial function indicators were detected using kits. Primary muscle satellite cells were isolated, and the antioxidant molecule Nrf2 was detected. MTT assay and Edu assay were used to evaluate proliferation and TUNEL assay for cell death. The results show that the deletion of Dux enhanced forelimb grip strength and EDL contractility, prolonged running time and distance in mdx mice. Deleting Dux also attenuated muscle fibrosis, inflammation, oxidative stress, and mitochondrial dysfunction in mdx mice. Furthermore, Dux deficiency promoted proliferation and survival of muscle satellite cells by increasing Nrf2 levels in mdx mice.
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Children Health Care, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Wen Zhai
- Department of Clinical Genetics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Ruixue Zhang
- Department of Clinical Genetics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Na Cai
- Department of Clinical Genetics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Jia FF, Drew AP, Nicholson GA, Corbett A, Kumar KR. Facioscapulohumeral muscular dystrophy type 2: an update on the clinical, genetic, and molecular findings. Neuromuscul Disord 2021; 31:1101-1112. [PMID: 34711481 DOI: 10.1016/j.nmd.2021.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common genetic disease of the skeletal muscle with a characteristic pattern of weakness. Facioscapulohumeral muscular dystrophy type 2 (FSHD2) accounts for approximately 5% of all cases of FSHD and describes patients without a D4Z4 repeat contraction on chromosome 4. Phenotypically FSHD2 shows virtually no difference from FSHD1 and both forms of FSHD arise via a common downstream mechanism of epigenetic derepression of the transcription factor DUX4 in skeletal muscle cells. This results in expression of DUX4 and target genes leading to skeletal muscle toxicity. Over the past decade, major progress has been made in our understanding of the genetic and epigenetic architecture that underlies FSHD2 pathogenesis, as well as the clinical manifestations and disease progression. These include the finding that FSHD2 is a digenic disease and that mutations in the genes SMCHD1, DNMT3B, and more recently LRIF1, can cause FSHD2. FSHD2 is complex and it is important that clinicians keep abreast of recent developments; this review aims to serve as an update of the clinical, genetic, and molecular research into this condition.
Collapse
Affiliation(s)
- Fangzhi Frank Jia
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia.
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | - Garth Alexander Nicholson
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Alastair Corbett
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Kishore Raj Kumar
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| |
Collapse
|
3
|
Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:342-354. [PMID: 34484861 PMCID: PMC8399085 DOI: 10.1016/j.omtn.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by chromatin relaxation of the D4Z4 repeat resulting in misexpression of the D4Z4-encoded DUX4 gene in skeletal muscle. One of the key genetic requirements for the stable production of full-length DUX4 mRNA in skeletal muscle is a functional polyadenylation signal (ATTAAA) in exon three of DUX4 that is used in somatic cells. Base editors hold great promise to treat DNA lesions underlying genetic diseases through their ability to carry out specific and rapid nucleotide mutagenesis even in postmitotic cells such as skeletal muscle. In this study, we present a simple and straightforward strategy for mutagenesis of the somatic DUX4 polyadenylation signal by adenine base editing in immortalized myoblasts derived from independent FSHD-affected individuals. We show that mutating this critical cis-regulatory element results in downregulation of DUX4 mRNA and its direct transcriptional target genes. Our findings identify the somatic DUX4 polyadenylation signal as a therapeutic target and represent the first step toward clinical application of the CRISPR-Cas9 base editing platform for FSHD gene therapy.
Collapse
|
4
|
Mul K, Hamadeh T, Horlings CGC, Tawil R, Statland JM, Sacconi S, Corbett AJ, Voermans NC, Faber CG, van Engelen BGM, Merkies ISJ. The facioscapulohumeral muscular dystrophy Rasch-built overall disability scale (FSHD-RODS). Eur J Neurol 2021; 28:2339-2348. [PMID: 33838063 PMCID: PMC8251612 DOI: 10.1111/ene.14863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Facioscapulohumeral muscular dystrophy (FHSD) is a debilitating inherited muscle disease for which various therapeutic strategies are being investigated. Thus far, little attention has been given in FSHD to the development of scientifically sound outcome measures fulfilling regulatory authority requirements. The aim of this study was to design a patient-reported Rasch-built interval scale on activity and participation for FSHD. METHODS A pre-phase FSHD-Rasch-built overall disability scale (pre-FSHD-RODS; consisting of 159 activity/participation items), based on the World Health Organization international classification of disease-related functional consequences was completed by 762 FSHD patients (Netherlands: n = 171; UK: n = 287; United States: n = 221; France: n = 52; Australia: n = 32). A proportion of the patient cohort completed it twice (n = 230; interval 2-4 weeks; reliability studies). The pre-FSHD-RODS was subjected to Rasch analyses to create a model fulfilling its requirements. Validity studies were performed through correlation with the motor function measure. RESULTS The pre-FSHD-RODS did not meet the Rasch model expectations. Based on determinants such as misfit statistics and misfit residuals, differential item functioning, and local dependency, we systematically removed items until a final 38-inquiry (originating from 32 items; six items split) FSHD-RODS was constructed achieving Rasch model expectations. Adequate test-retest reliability and (cross-cultural and external) validity scores were obtained. CONCLUSIONS The FSHD-RODS is a disease-specific interval measure suitable for detecting activity and participation restrictions in patients with FSHD with good item/person reliability and validity scores. The use of this scale is recommended in the near future, to determine the functional deterioration slope in FSHD per year as a preparation for the upcoming clinical intervention trials in FSHD.
Collapse
Affiliation(s)
- Karlien Mul
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Tatiana Hamadeh
- Department of NeurologyCuraçao Medical CenterWillemstadCuraçao
| | - Corinne G. C. Horlings
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Rabi Tawil
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNYUSA
| | | | | | | | - Nicol C. Voermans
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Catharina G. Faber
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Baziel G. M. van Engelen
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Ingemar S. J. Merkies
- Department of NeurologyCuraçao Medical CenterWillemstadCuraçao
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
5
|
Blokhuis AM, Deenen JCW, Voermans NC, van Engelen BGM, Kievit W, Groothuis JT. The socioeconomic burden of facioscapulohumeral muscular dystrophy. J Neurol 2021; 268:4778-4788. [PMID: 34043041 PMCID: PMC8563627 DOI: 10.1007/s00415-021-10591-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Promising genetic therapies are being investigated in facioscapulohumeral muscular dystrophy (FSHD). However, the current cost of illness is largely unknown. OBJECTIVE This study aimed at determining the socioeconomic burden of FSHD. METHODS Adult patients with FSHD from the Dutch FSHD registry were invited to complete a questionnaire on medical consumption, work productivity and health-related quality of life (HR-QoL) using the EQ-5D-5L. Associated costs were calculated from a societal perspective. A generalized linear model was fitted to the data to investigate whether level of mobility was related to annual costs of illness. RESULTS 172 patients with FSHD completed the questionnaire (response rate 65%). The per-patient annual direct medical costs of FSHD were estimated at €12,077, direct non-medical costs at €9179 and indirect costs at €5066, adding up to a total cost of illness of €26,322 per patient per year. The direct costs of illness were €21,256, approximately five times higher than the mean per-capita health expenditures in the Netherlands. Major cost-driving factors were formal home care and informal care. A decreased level of mobility was associated with higher direct costs of illness. HR-QoL was significantly reduced in patients with FSHD with a median health utility value of 0.63. CONCLUSIONS We show that FSHD is associated with substantial direct and indirect socioeconomic costs as well as a reduction in HR-QoL. These findings are important for health care decision makers and aids in allocation of research funds and evaluation of the cost-effectiveness of novel therapies.
Collapse
Affiliation(s)
- Anna M Blokhuis
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Radboud university medical center, Nijmegen, The Netherlands.
| | - Johanna C W Deenen
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud university medical center, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud university medical center, Nijmegen, The Netherlands
| | - Wietske Kievit
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Jan T Groothuis
- Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Lim KRQ, Yokota T. Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Front Pharmacol 2021; 12:642858. [PMID: 33776777 PMCID: PMC7996372 DOI: 10.3389/fphar.2021.642858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive, asymmetric muscle weakness at the face, shoulders, and upper limbs, which spreads to the lower body with age. It is the third most common inherited muscular disorder worldwide. Around 20% of patients are wheelchair-bound, and some present with extramuscular manifestations. FSHD is caused by aberrant expression of the double homeobox protein 4 (DUX4) gene in muscle. DUX4 codes for a transcription factor which, in skeletal muscle, dysregulates numerous signaling activities that culminate in cytotoxicity. Potential treatments for FSHD therefore aim to reduce the expression of DUX4 or the activity of its toxic protein product. In this article, we review how genetic approaches such as those based on oligonucleotide and genome editing technologies have been developed to achieve these goals. We also outline the challenges these therapies are facing on the road to translation, and discuss possible solutions and future directions.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
7
|
Lemmers RJLF, van der Vliet PJ, Blatnik A, Balog J, Zidar J, Henderson D, Goselink R, Tapscott SJ, Voermans NC, Tawil R, Padberg GWAM, van Engelen BG, van der Maarel SM. Chromosome 10q-linked FSHD identifies DUX4 as principal disease gene. J Med Genet 2021; 59:180-188. [PMID: 33436523 DOI: 10.1136/jmedgenet-2020-107041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 11/14/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Facioscapulohumeral dystrophy (FSHD) is an inherited muscular dystrophy clinically characterised by muscle weakness starting with the facial and upper extremity muscles. A disease model has been developed that postulates that failure in somatic repression of the transcription factor DUX4 embedded in the D4Z4 repeat on chromosome 4q causes FSHD. However, due to the position of the D4Z4 repeat close to the telomere and the complex genetic and epigenetic aetiology of FSHD, there is ongoing debate about the transcriptional deregulation of closely linked genes and their involvement in FSHD. METHOD Detailed genetic characterisation and gene expression analysis of patients with clinically confirmed FSHD and control individuals. RESULTS Identification of two FSHD families in which the disease is caused by repeat contraction and DUX4 expression from chromosome 10 due to a de novo D4Z4 repeat exchange between chromosomes 4 and 10. We show that the genetic lesion causal to FSHD in these families is physically separated from other candidate genes on chromosome 4. We demonstrate that muscle cell cultures from affected family members exhibit the characteristic molecular features of FSHD, including DUX4 and DUX4 target gene expression, without showing evidence for transcriptional deregulation of other chromosome 4-specific candidate genes. CONCLUSION This study shows that in rare situations, FSHD can occur on chromosome 10 due to an interchromosomal rearrangement with the FSHD locus on chromosome 4q. These findings provide further evidence that DUX4 derepression is the dominant disease pathway for FSHD. Hence, therapeutic strategies should focus on DUX4 as the primary target.
Collapse
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ana Blatnik
- Cancer Genetics Clinic, Institute of Oncology, Ljubljana, Slovenia
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Janez Zidar
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Don Henderson
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Rianne Goselink
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - George W A M Padberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Baziel Gm van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|