1
|
Zakharova MN, Bakulin IS, Abramova AA. Toxic Damage to Motor Neurons. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract—Amyotrophic lateral sclerosis (ALS) is a multifactor disease in the development of which both genetic and environmental factors play a role. Specifically, the effects of organic and inorganic toxic substances can result in an increased risk of ALS development and the acceleration of disease progression. It was described that some toxins can induce potentially curable ALS-like syndromes. In this case, the specific treatment for the prevention of the effects of the toxic factor may result in positive clinical dynamics. In this article, we review the main types of toxins that can damage motor neurons in the brain and spinal cord leading to the development of the clinical manifestation of ALS, briefly present historical data on studies on the role of toxic substances, and describe the main mechanisms of the pathogenesis of motor neuron disease associated with their action.
Collapse
|
2
|
Lim S, Mohaimin S, Min D, Roberts T, Sohn YJ, Wong J, Sivanesathurai R, Kwon SC, Trinh-Shevrin C. Alzheimer's Disease and its Related Dementias among Asian Americans, Native Hawaiians, and Pacific Islanders: A Scoping Review. J Alzheimers Dis 2020; 77:523-537. [PMID: 32675416 PMCID: PMC8638681 DOI: 10.3233/jad-200509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The Asian American, Native Hawaiian, and Pacific Islander (AANHPI) aging population is rapidly growing and the burden of Alzheimer's disease and its related dementias (ADRD) will likely mirror this demographic growth. AANHPIs face significant barriers in obtaining timely ADRD diagnosis and services; yet little is known about ADRD in this population. OBJECTIVE The study objective is to conduct a systematic review on the published literature on ADRD among AANHPIs to identify gaps and priorities to inform future research and action plans. METHODS The systematic review was conducted following the PRISMA Protocol for Systematic Reviews. Co-author (TR), an experienced Medical Librarian, searched PubMed, EMBASE, PsycINFO, Cochrane Central of Clinical Trials, Ageline, and Web of Science for peer-reviewed articles describing ADRD among AANHPIs. The search was not limited by language or publication date. Each citation was reviewed by two trained independent reviewers. Conflicts were resolved through consensus. RESULTS The title/abstract and full texts of 1,447 unique articles were screened for inclusion, yielding 168 articles for analysis. Major research topics included prevalence, risk factors, comorbidities, interventions and outreach, knowledge and attitudes, caregiving, and detection tools. A limited number of studies reported on national data, on NHPI communities generally, and on efficacy of interventions targeting AANHPI communities. CONCLUSION To our knowledge, this is the first systematic review on ADRD among AANHPI populations. Our review provides a first step in mapping the extant literature on ADRD among this underserved and under-researched population and will serve as a guide for future research, policy, and intervention.
Collapse
Affiliation(s)
- Sahnah Lim
- Department of Population Health, New York University Grossman School of Medicine
| | - Sadia Mohaimin
- Department of Population Health, New York University Grossman School of Medicine
| | - Deborah Min
- Department of Population Health, New York University Grossman School of Medicine
| | - Timothy Roberts
- Health Science Library, New York University Grossman School of Medicine
| | - Young-Jin Sohn
- Department of Population Health, New York University Grossman School of Medicine
| | - Jazmine Wong
- Department of Population Health, New York University Grossman School of Medicine
| | | | - Simona C. Kwon
- Department of Population Health, New York University Grossman School of Medicine
| | - Chau Trinh-Shevrin
- Department of Population Health, New York University Grossman School of Medicine
| |
Collapse
|
3
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
4
|
Festoff BW, Citron BA. Thrombin and the Coag-Inflammatory Nexus in Neurotrauma, ALS, and Other Neurodegenerative Disorders. Front Neurol 2019; 10:59. [PMID: 30804878 PMCID: PMC6371052 DOI: 10.3389/fneur.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
This review details our current understanding of thrombin signaling in neurodegeneration, with a focus on amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease) as well as future directions to be pursued. The key factors are multifunctional and involved in regulatory pathways, namely innate immune and the coagulation cascade activation, that are essential for normal nervous system function and health. These two major host defense systems have a long history in evolution and include elements and regulators of the coagulation pathway that have significant impacts on both the peripheral and central nervous system in health and disease. The clotting cascade responds to a variety of insults to the CNS including injury and infection. The blood brain barrier is affected by these responses and its compromise also contributes to these detrimental effects. Important molecules in signaling that contribute to or protect against neurodegeneration include thrombin, thrombomodulin (TM), protease activated receptor 1 (PAR1), damage associated molecular patterns (DAMPs), such as high mobility group box protein 1 (HMGB1) and those released from mitochondria (mtDAMPs). Each of these molecules are entangled in choices dependent upon specific signaling pathways in play. For example, the particular cleavage of PAR1 by thrombin vs. activated protein C (APC) will have downstream effects through coupled factors to result in toxicity or neuroprotection. Furthermore, numerous interactions influence these choices such as the interplay between HMGB1, thrombin, and TM. Our hope is that improved understanding of the ways that components of the coagulation cascade affect innate immune inflammatory responses and influence the course of neurodegeneration, especially after injury, will lead to effective therapeutic approaches for ALS, traumatic brain injury, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Barry W Festoff
- pHLOGISTIX LLC, Fairway, KS, United States.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bruce A Citron
- Laboratory of Molecular Biology Research & Development, VA New Jersey Health Care System, East Orange, NJ, United States.,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
5
|
Menéndez-González M, Álvarez-Avellón T, Salas-Pacheco JM, de Celis-Alonso B, Wyman-Chick KA, Arias-Carrión O. Frontotemporal Lobe Degeneration as Origin of Scans Without Evidence of Dopaminergic Deficit. Front Neurol 2018; 9:335. [PMID: 29881367 PMCID: PMC5976748 DOI: 10.3389/fneur.2018.00335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/26/2018] [Indexed: 12/30/2022] Open
Abstract
The term scans without evidence of dopaminergic deficit (SWEDD) can be associated with any patient diagnosed at first with Parkinson's disease but with a negative dopamine transporter-single photon emission computed tomography (DaTSPECT), which does not confirm the presynaptic dopaminergic deficiency. Therefore, an alternative diagnosis should be sought to support parkinsonism as a clinical diagnosis. Parkinsonism is a well-known manifestation of frontotemporal lobar degeneration (FTLD), particularly frequent in those with positive DaTSPECT. Here, we reinforce previous observations that parkinsonism can be present in FTLD patients with negative DaTSPECT and therefore, FTLD may account for a percentage of patients with SWEDD. We gather the clinical observations supporting this hypothesis and describe a case report illustrating this idea. Studies suggest the result of DaTSPECT in FTLD may depend on the neuropathology and clinical subtype. However, most studies do not provide a clinical description of the clinical subtype or pathological features making the association between subtypes of FTLD and DaTSPECT results impossible at the moment. Further studies correlating clinical, neuropsychological, neuroimaging, genetic, and pathology findings are needed to better understand parkinsonism in FTLD.
Collapse
Affiliation(s)
- Manuel Menéndez-González
- Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Departamento de Morfología y Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | | | - José M Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Benito de Celis-Alonso
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño/Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, México
| |
Collapse
|
6
|
Schreglmann SR, Bhatia KP, Stamelou M. Advances in the Clinical Differential Diagnosis of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:79-127. [PMID: 28554422 DOI: 10.1016/bs.irn.2017.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The differential diagnosis of Parkinson's disease has widened considerably in recent years. This chapter aims to summarize the current knowledge on the clinical differential diagnoses of sporadic Parkinson's disease. As the number of monogenic familial Parkinson's disease variants and risk factors is growing, so is the number of appreciated etiologies of atypical parkinsonian and other pallidopyramidal syndromes. This work aims at summarizing the current knowledge on both motor and nonmotor neurological signs and symptoms that aid the clinical diagnosis of Parkinson's disease and its differential diagnoses.
Collapse
Affiliation(s)
| | | | - Maria Stamelou
- University of Athens Medical School, Hospital Attikon, Athens, Greece; HYGEIA Hospital, Athens, Greece; Philipps University, Marburg, Germany.
| |
Collapse
|
7
|
Hill LJ, Williams AC. Meat Intake and the Dose of Vitamin B 3 - Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int J Tryptophan Res 2017; 10:1178646917704662. [PMID: 28579801 PMCID: PMC5419340 DOI: 10.1177/1178646917704662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Meat and vitamin B3 - nicotinamide - intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by 'welcoming' gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive 'meat transitions'. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic 'old friends' compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.
Collapse
Affiliation(s)
- Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
8
|
Schwartz GG, Klug MG. Motor neuron disease mortality rates in U.S. states are associated with well water use. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:528-534. [PMID: 27324739 PMCID: PMC5152538 DOI: 10.1080/21678421.2016.1195409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/04/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with an unknown cause and invariably fatal outcome. We sought to evaluate a correlation between motor neuron disease (MND) mortality rates and residential radon levels that was previously reported for counties in the United Kingdom. We examined the relationships between age-adjusted MND mortality rates in U.S. states with residential radon levels, well water use, and other variables using structural equation modeling. We observed a significant correlation between MND mortality rates and radon levels. However, in structural equation models, radon did not have a significant, direct effect on MND mortality rates. Conversely, MND mortality rates were significantly and directly predicted by race and by the percentage of the population of each state using well water (p < 0.001 and p = 0.022). We observed similar, significant effects for well water use and MND mortality for males and females separately (p < 0.05). In conclusion, we hypothesize that the association of MND mortality rates with well water use reflects contamination of wells with Legionella, a bacterium common in well water that is known to cause neurologic disease. A Legionella hypothesis is a biologically plausible cause of ALS and suggests new avenues for etiologic research.
Collapse
Affiliation(s)
- Gary G. Schwartz
- Department of Population Health, University of North Dakota School of Medicine & Health Sciences,
Grand Forks,
ND,
USA
| | - Marilyn G. Klug
- Department of Population Health, University of North Dakota School of Medicine & Health Sciences,
Grand Forks,
ND,
USA
| |
Collapse
|
9
|
Tshala-Katumbay D, Mwanza JC, Rohlman DS, Maestre G, Oriá RB. A global perspective on the influence of environmental exposures on the nervous system. Nature 2015; 527:S187-92. [PMID: 26580326 PMCID: PMC4772865 DOI: 10.1038/nature16034] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Economic transitions in the era of globalization warrant a fresh look at the neurological risks associated with environmental change. These are driven by industrial expansion, transfer and mobility of goods, climate change and population growth. In these contexts, risk of infectious and non-infectious diseases are shared across geographical boundaries. In low- and middle-income countries, the risk of environmentally mediated brain disease is augmented several fold by lack of infrastructure, poor health and safety regulations, and limited measures for environmental protection. Neurological disorders may occur as a result of direct exposure to chemical and/or non-chemical stressors, including but not limited to, ultrafine particulate matters. Individual susceptibilities to exposure-related diseases are modified by genetic, epigenetic and metagenomic factors. The existence of several uniquely exposed populations, including those in the areas surrounding the Niger Delta or north western Amazon oil operations; those working in poorly regulated environments, such as artisanal mining industries; or those, mostly in sub-Saharan Africa, relying on cassava as a staple food, offers invaluable opportunities to advance the current understanding of brain responses to environmental challenges. Increased awareness of the brain disorders that are prevalent in low- and middle-income countries and investments in capacity for further environmental health-related research are positive steps towards improving human health.
Collapse
Affiliation(s)
- Desire Tshala-Katumbay
- Department of Neurology, Oregon Health &Science University, Portland, Oregon, 97239, USA.,National Institute of Biomedical Research, 1197 Kinshasa I, Congo.,Department of Neurology, University of Kinshasa, 825 Kinshasa XI, Congo
| | - Jean-Claude Mwanza
- Department of Ophthalmology, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - Diane S Rohlman
- Occupational and Environmental Health, The University of Iowa, Iowa 52242, USA.,Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, 97239, USA
| | - Gladys Maestre
- G. H. Sergievsky Center, Columbia University Medical Center, New York, New York 10032, USA
| | - Reinaldo B Oriá
- Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60020, Brazil
| |
Collapse
|
10
|
|
11
|
Fiest K, Pringsheim T, Patten S, Svenson L, Jetté N. The Role of Systematic Reviews and Meta-Analyses of Incidence and Prevalence Studies in Neuroepidemiology. Neuroepidemiology 2014; 42:16-24. [DOI: 10.1159/000355533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Bradley WG, Borenstein AR, Nelson LM, Codd GA, Rosen BH, Stommel EW, Cox PA. Is exposure to cyanobacteria an environmental risk factor for amyotrophic lateral sclerosis and other neurodegenerative diseases? Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:325-33. [PMID: 23286757 DOI: 10.3109/21678421.2012.750364] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a broad scientific consensus that amyotrophic lateral sclerosis (ALS) is caused by gene-environment interactions. Mutations in genes underlying familial ALS (fALS) have been discovered in only 5-10% of the total population of ALS patients. Relatively little attention has been paid to environmental and lifestyle factors that may trigger the cascade of motor neuron death leading to the syndrome of ALS, although exposure to chemicals including lead and pesticides, and to agricultural environments, smoking, certain sports, and trauma have all been identified with an increased risk of ALS. There is a need for research to quantify the relative roles of each of the identified risk factors for ALS. Recent evidence has strengthened the theory that chronic environmental exposure to the neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) produced by cyanobacteria may be an environmental risk factor for ALS. Here we describe methods that may be used to assess exposure to cyanobacteria, and hence potentially to BMAA, namely an epidemiologic questionnaire and direct and indirect methods for estimating the cyanobacterial load in ecosystems. Rigorous epidemiologic studies could determine the risks associated with exposure to cyanobacteria, and if combined with genetic analysis of ALS cases and controls could reveal etiologically important gene-environment interactions in genetically vulnerable individuals.
Collapse
Affiliation(s)
- Walter G Bradley
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Regulation of FMO and PON detoxication systems in ALS human tissues. Neurotox Res 2012; 23:370-7. [PMID: 23073612 DOI: 10.1007/s12640-012-9356-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive, and fatal neurodegenerative disease with unknown etiology. Recent evidence suggests an association between the exposure to toxic environmental factors and sporadic ALS. The flavin-containing monooxygenases (FMOs) and paraoxonase (PONs) genes encode enzymes involved in xenobiotic detoxication and are associated with ALS. FMO and PON gene expression has been examined in the human central nervous system including human brain subregions defined as the spinal cord, medulla, and cerebral cortex and in the peripheral tissues (lymphocytes, fibroblasts) in ALS patients and normal control subjects. FMO expression was generally higher in tissues from ALS subjects than in control tissues, with the largest increases in FMO expression detected in the spinal cord. In peripheral tissues, the FMO mRNA level was found to be lower compared with FMO expression in brain tissue, and no differences were detected between ALS patients and the control tissue. FMO and PON gene expression was low in peripheral tissues. In contrast to FMO5 expression, the PON2 gene was down-regulated in ALS patients compared to the controls. Because FMO and PON are involved in the detoxication processes and their functional activity to bioactivate chemicals to toxins has been documented, the data herein suggest that environmental toxin exposure may play a role in a subset of individuals who contract ALS by altering FMO and PON gene expression. Although the precise pathogenic link is presently unknown, these findings suggest a role at FMO and PON genes in the development of ALS.
Collapse
|
14
|
|