1
|
Jiang T, Li G, Xu J, Gao S, Chen X. The Challenge of the Pathogenesis of Parkinson's Disease: Is Autoimmunity the Culprit? Front Immunol 2018; 9:2047. [PMID: 30319601 PMCID: PMC6170625 DOI: 10.3389/fimmu.2018.02047] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
The role of autoimmunity in Parkinson's disease (PD), as one of the most popular research subjects, has been intensively investigated in recent years. Although the ultimate cause of PD is unknown, one major area of interest remains identifying new therapeutic targets and options for patients suffering from PD. Herein, we present a comprehensive review of the impacts of autoimmunity in neurodegenerative diseases, especially PD, and we have composed a logical argument to substantiate that autoimmunity is actively involved in the pathogenesis of PD through several proteins, including α-synuclein, DJ-1, PINK1, and Parkin, as well as immune cells, such as dendritic cells, microglia, T cells, and B cells. Furthermore, a detailed analysis of the relevance of autoimmunity to the clinical symptoms of PD provides strong evidence for the close correlation of autoimmunity with PD. In addition, the previously identified relationships between other autoimmune diseases and PD help us to better understand the disease pattern, laying the foundation for new therapeutic solutions to PD. In summary, this review aims to integrate and present currently available data to clarify the pathogenesis of PD and discuss some controversial but innovative research perspectives on the involvement of autoimmunity in PD, as well as possible novel diagnostic methods and treatments based on autoimmunity targets.
Collapse
Affiliation(s)
- Tianfang Jiang
- Department of Neurology, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai, China
| | - Gen Li
- Department of Neurology & Institute of Neurology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Xu
- East Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Shane Gao
- East Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Xu Chen
- Department of Neurology, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai, China
| |
Collapse
|
2
|
Abstract
Multiple sclerosis is a progressive autoimmune neurologic disorder that may affect any region of the central nervous system. Spasticity in patients with multiple sclerosis can be debilitating and detrimental to the function and quality of life of patients. Treatment options include oral medications, chemodenervation, physical therapy, and modalities. Cannabinoids in the form of a delta-9-tetrahydrocannabinol/cannabidiol oro-mucosal spray has been shown to be effective in addressing spasticity in multiple sclerosis. Successful treatment of spasticity will be integrated, multimodal, and individualized.
Collapse
|
3
|
Howell OW, Schulz-Trieglaff EK, Carassiti D, Gentleman SM, Nicholas R, Roncaroli F, Reynolds R. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space. Neuropathol Appl Neurobiol 2015; 41:798-813. [PMID: 25421634 DOI: 10.1111/nan.12199] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/20/2014] [Indexed: 01/12/2023]
Abstract
AIMS Multiple sclerosis (MS) is a progressive inflammatory neurological disease affecting myelin, neurons and glia. Demyelination and neurodegeneration of cortical grey matter contribute to a more severe disease, and inflammation of the forebrain meninges associates with pathology of the underlying neocortical grey matter, particularly in deep sulci. We assessed the extent of meningeal inflammation of the cerebellum, another structure with a deeply folded anatomy, to better understand the association between subarachnoid inflammation and grey matter pathology in progressive MS. METHODS We examined demyelinating and neuronal pathology in the context of meningeal inflammation in cerebellar tissue blocks from a cohort of 27 progressive MS cases previously characterized on the basis of the absence/presence of lymphoid-like aggregates in the forebrain meninges, in comparison with 11 non-neurological controls. RESULTS Demyelination and meningeal inflammation of the cerebellum was greatest in those cases previously characterized as harbouring lymphoid-like structures in the forebrain regions. Meningeal inflammation was mild to moderate in cerebellar tissue blocks, and no lymphoid-like structures were seen. Quantification of meningeal macrophages, CD4+, CD8+ T lymphocytes, B cells and plasma cells revealed that the density of meningeal macrophages associated with microglial activation in the grey matter, and the extent of grey matter demyelination correlated with the density of macrophages and plasma cells in the overlying meninges, and activated microglia of the parenchyma. CONCLUSIONS These data suggest that chronic inflammation is widespread throughout the subarachnoid space and contributes to a more severe subpial demyelinating pathology in the cerebellum.
Collapse
Affiliation(s)
- Owain W Howell
- Wolfson Neuroscience Laboratories, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK.,Neurology and Molecular Neuroscience, Institute of Life Science 1, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Elena Katharina Schulz-Trieglaff
- Wolfson Neuroscience Laboratories, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK.,Department of Molecules-Signalling-Development, Max Planck Institute of Neurobiology Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Daniele Carassiti
- Wolfson Neuroscience Laboratories, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK.,Neurosciences and Neurotrauma, Blizard Institute, Queen Mary University London, London, E1 2AT, UK
| | - Steven M Gentleman
- Wolfson Neuroscience Laboratories, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - Richard Nicholas
- Wolfson Neuroscience Laboratories, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - Federico Roncaroli
- Wolfson Neuroscience Laboratories, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - Richard Reynolds
- Wolfson Neuroscience Laboratories, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
4
|
Brana C, Frossard MJ, Pescini Gobert R, Martinier N, Boschert U, Seabrook TJ. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol 2015; 40:564-78. [PMID: 23551178 DOI: 10.1111/nan.12048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/08/2013] [Indexed: 01/18/2023]
Abstract
AIMS Sphingosine-1-phosphate receptor (S1PR) modulating therapies are currently in the clinic or undergoing investigation for multiple sclerosis (MS) treatment. However, the expression of S1PRs is still unclear in the central nervous system under normal conditions and during neuroinflammation. METHODS Using immunohistochemistry we examined tissues from both grey and white matter MS lesions for sphingosine-1-phosphate receptor 1 (S1P1 ) and 5 (S1P5 ) expression. Tissues from Alzheimer's disease (AD) cases were also examined. RESULTS S1P1 expression was restricted to astrocytes and endothelial cells in control tissues and a decrease in endothelial cell expression was found in white matter MS lesions. In grey matter MS lesions, astrocyte expression was lost in active lesions, while in quiescent lesions it was restored to normal expression levels. CNPase colocalization studies demonstrated S1P5 expression on myelin and both were reduced in demyelinated lesions. In AD tissues we found no difference in S1P1 expression. CONCLUSION These data demonstrate a differential modulation of S1PRs in MS lesions, which may have an impact on S1PR-directed therapies.
Collapse
Affiliation(s)
- Corinne Brana
- Merck Serono, Multiple Sclerosis Platform, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Aharoni R. Immunomodulation neuroprotection and remyelination - the fundamental therapeutic effects of glatiramer acetate: a critical review. J Autoimmun 2014; 54:81-92. [PMID: 24934599 DOI: 10.1016/j.jaut.2014.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a multifaceted heterogeneous disease with various patterns of tissue damage. In addition to inflammation and demyelination, widespread axonal and neuronal pathologies are central components of this disease. MS therapies aim to restrain the pathological processes, enhance protective mechanisms, and prevent disease progression. The amino acid copolymer, glatiramer acetate (GA, Copaxone), an approved treatment for MS, has a unique mode of action. Evidence from the animal model experimental autoimmune encephalomyelitis (EAE) and from MS patients indicates that GA affects various levels of the innate and the adaptive immune response, inducing deviation from the pro-inflammatory to the anti-inflammatory pathways. This includes competition for the binding of antigen presenting cells, driving dendritic cells, monocytes, and B-cells towards anti-inflammatory responses, induction of Th2/3 and T-regulatory cells, and downregulating of both Th1 and Th-17 cells. The immune cells induced by GA reach the inflamed disease organ and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings have revealed that in addition to its immunomodulatory activities GA promotes neuroprotective repair processes such as neurotrophic factors secretion and remyelination. This review aims to provide a comprehensive overview on the diverse mechanism of action of GA in EAE/MS, in particular on the in situ effect of GA and its ability to generate neuroprotection and repair in the CNS. In view of its immunomodulatory activity, the beneficial effects of GA in various models of additional autoimmune related pathologies, such as immune rejection and inflammatory bowel disease (IBD), are also presented.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|