1
|
Bampton A, McHutchison C, Talbot K, Benatar M, Thompson AG, Turner MR. The Basis of Cognitive and Behavioral Dysfunction in Amyotrophic Lateral Sclerosis. Brain Behav 2024; 14:e70115. [PMID: 39501538 PMCID: PMC11538089 DOI: 10.1002/brb3.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 11/09/2024] Open
Abstract
OBJECTIVE To summarize and evaluate evidence pertaining to the clinical, genetic, histopathological, and neuroimaging correlates of cognitive and behavioral dysfunction in amyotrophic lateral sclerosis (ALS). METHODOLOGY We comprehensively reviewed the literature on cognitive and behavioral manifestations of ALS, narrating findings from both cross-sectional and longitudinal studies. We discussed knowledge gaps in the evidence base and key limitations affecting studies to date, before formulating a framework for future research paradigms aimed at investigating clinicopathological correlates of neuropsychological dysfunction in ALS. RESULTS Studies have demonstrated clinical associations with cognitive dysfunction in ALS e.g., bulbar-onset of symptoms, pathological associations (extramotor TDP-43 deposition), and imaging associations (frontotemporal involvement). The most common behavioral deficit, apathy, is highly associated with verbal fluency, but longitudinal studies assessing behavioral dysfunction in ALS are comparatively lacking. CONCLUSION Longitudinal studies have been helpful in identifying several potential correlates of cognitive and behavioral dysfunction but have frequently been confounded by selection bias and inappropriate testing platforms. This review provides a framework for more robust assessment of clinicopathological associations of neuropsychological abnormalities in ALS in the future, advocating for greater utilization of pre-symptomatic C9orf72 repeat expansion-carrying cohorts.
Collapse
Affiliation(s)
- Alexander Bampton
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | | - Kevin Talbot
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Michael Benatar
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | | | - Martin R. Turner
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Jellinger KA. Mild cognitive impairment in amyotrophic lateral sclerosis: current view. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02850-7. [PMID: 39470847 DOI: 10.1007/s00702-024-02850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal multi-system neurodegenerative disorder with no effective treatment or cure. Although primarily characterized by motor degeneration, cognitive dysfunction is an important non-motor symptom that has a negative impact on patient and caregiver burden. Mild cognitive deficits are present in a subgroup of non-demented patients with ALS, often preceding motor symptoms. Detailed neuropsychological assessments reveal deficits in a variety of cognitive domains, including those of verbal fluency and retrieval, language, executive function, attention and verbal memory. Mild cognitive impairment (MCI), a risk factor for developing dementia, affects between 10% and over 50% of ALS patients. Neuroimaging revealed atrophy of frontal and temporal cortices, disordered white matter Integrity, volume reduction in amygdala and thalamus, hypometabolism in the frontal and superior temporal gyrus and anterior insula. Neuronal loss in non-motor brain areas, associated with TDP-43 deposition, one of the morphological hallmarks of ALS, is linked to functional disruption of frontostriatal and frontotemporo-limbic connectivities as markers for cognitive deficits in ALS, the pathogenesis of which is still poorly understood. Early diagnosis by increased cerebrospinal fluid or serum levels of neurofilament light/heavy chain or glial fibrillary acidic protein awaits confirmation for MCI in ALS. These fluid biomarkers and early detection of brain connectivity signatures before structural changes will be helpful not only in establishing early premature diagnosis but also in clarifying the pathophysiological mechanisms of MCI in ALS, which might serve as novel targets for prohibition/delay and future adequate treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
3
|
Metzger M, Dukic S, McMackin R, Giglia E, Mitchell M, Bista S, Costello E, Peelo C, Tadjine Y, Sirenko V, Plaitano S, Coffey A, McManus L, Farnell Sharp A, Mehra P, Heverin M, Bede P, Muthuraman M, Pender N, Hardiman O, Nasseroleslami B. Functional network dynamics revealed by EEG microstates reflect cognitive decline in amyotrophic lateral sclerosis. Hum Brain Mapp 2024; 45:e26536. [PMID: 38087950 PMCID: PMC10789208 DOI: 10.1002/hbm.26536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024] Open
Abstract
Recent electroencephalography (EEG) studies have shown that patterns of brain activity can be used to differentiate amyotrophic lateral sclerosis (ALS) and control groups. These differences can be interrogated by examining EEG microstates, which are distinct, reoccurring topographies of the scalp's electrical potentials. Quantifying the temporal properties of the four canonical microstates can elucidate how the dynamics of functional brain networks are altered in neurological conditions. Here we have analysed the properties of microstates to detect and quantify signal-based abnormality in ALS. High-density resting-state EEG data from 129 people with ALS and 78 HC were recorded longitudinally over a 24-month period. EEG topographies were extracted at instances of peak global field power to identify four microstate classes (labelled A-D) using K-means clustering. Each EEG topography was retrospectively associated with a microstate class based on global map dissimilarity. Changes in microstate properties over the course of the disease were assessed in people with ALS and compared with changes in clinical scores. The topographies of microstate classes remained consistent across participants and conditions. Differences were observed in coverage, occurrence, duration, and transition probabilities between ALS and control groups. The duration of microstate class B and coverage of microstate class C correlated with lower limb functional decline. The transition probabilities A to D, C to B and C to B also correlated with cognitive decline (total ECAS) in those with cognitive and behavioural impairments. Microstate characteristics also significantly changed over the course of the disease. Examining the temporal dependencies in the sequences of microstates revealed that the symmetry and stationarity of transition matrices were increased in people with late-stage ALS. These alterations in the properties of EEG microstates in ALS may reflect abnormalities within the sensory network and higher-order networks. Microstate properties could also prospectively predict symptom progression in those with cognitive impairments.
Collapse
Affiliation(s)
- Marjorie Metzger
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Stefan Dukic
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- Department of Neurology, University Medical Centre Utrecht Brain CentreUtrecht UniversityUtrechtThe Netherlands
| | - Roisin McMackin
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Eileen Giglia
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Matthew Mitchell
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Saroj Bista
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Emmet Costello
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Colm Peelo
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Yasmine Tadjine
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Vladyslav Sirenko
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Serena Plaitano
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Amina Coffey
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Lara McManus
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Adelais Farnell Sharp
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Prabhav Mehra
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Mark Heverin
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Peter Bede
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Muthuraman Muthuraman
- Neural Engineering with Signal Analytics and Artificial Intelligence, Department of NeurologyUniversity of WürzburgWürzburgGermany
| | - Niall Pender
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- Department of PsychologyBeaumont HospitalDublinIreland
| | - Orla Hardiman
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- Department of NeurologyBeaumont HospitalDublinIreland
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
- FutureNeuro ‐ SFI Research Centre for Chronic and Rare Neurological DiseasesRoyal College of SurgeonsDublinIreland
| |
Collapse
|
4
|
Jellinger KA. The Spectrum of Cognitive Dysfunction in Amyotrophic Lateral Sclerosis: An Update. Int J Mol Sci 2023; 24:14647. [PMID: 37834094 PMCID: PMC10572320 DOI: 10.3390/ijms241914647] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive dysfunction is an important non-motor symptom in amyotrophic lateral sclerosis (ALS) that has a negative impact on survival and caregiver burden. It shows a wide spectrum ranging from subjective cognitive decline to frontotemporal dementia (FTD) and covers various cognitive domains, mainly executive/attention, language and verbal memory deficits. The frequency of cognitive impairment across the different ALS phenotypes ranges from 30% to 75%, with up to 45% fulfilling the criteria of FTD. Significant genetic, clinical, and pathological heterogeneity reflects deficits in various cognitive domains. Modern neuroimaging studies revealed frontotemporal degeneration and widespread involvement of limbic and white matter systems, with hypometabolism of the relevant areas. Morphological substrates are frontotemporal and hippocampal atrophy with synaptic loss, associated with TDP-43 and other co-pathologies, including tau deposition. Widespread functional disruptions of motor and extramotor networks, as well as of frontoparietal, frontostriatal and other connectivities, are markers for cognitive deficits in ALS. Cognitive reserve may moderate the effect of brain damage but is not protective against cognitive decline. The natural history of cognitive dysfunction in ALS and its relationship to FTD are not fully understood, although there is an overlap between the ALS variants and ALS-related frontotemporal syndromes, suggesting a differential vulnerability of motor and non-motor networks. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of cognitive impairment in ALS, which might even serve as novel targets for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
5
|
Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232415521. [PMID: 36555161 PMCID: PMC9779879 DOI: 10.3390/ijms232415521] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is pre-eminently a motor disease, the existence of non-motor manifestations, including sensory involvement, has been described in the last few years. Although from a clinical perspective, sensory symptoms are overshadowed by their motor manifestations, this does not mean that their pathological significance is not relevant. In this review, we have made an extensive description of the involvement of sensory and autonomic systems described to date in ALS, from clinical, neurophysiological, neuroimaging, neuropathological, functional, and molecular perspectives.
Collapse
|
6
|
Ishaque A, Ta D, Khan M, Zinman L, Korngut L, Genge A, Dionne A, Briemberg H, Luk C, Yang YH, Beaulieu C, Emery D, Eurich DT, Frayne R, Graham S, Wilman A, Dupré N, Kalra S. Distinct patterns of progressive gray and white matter degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp 2021; 43:1519-1534. [PMID: 34908212 PMCID: PMC8886653 DOI: 10.1002/hbm.25738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/17/2023] Open
Abstract
Progressive cerebral degeneration in amyotrophic lateral sclerosis (ALS) remains poorly understood. Here, three-dimensional (3D) texture analysis was used to study longitudinal gray and white matter cerebral degeneration in ALS from routine T1-weighted magnetic resonance imaging (MRI). Participants were included from the Canadian ALS Neuroimaging Consortium (CALSNIC) who underwent up to three clinical assessments and MRI at four-month intervals, up to 8 months after baseline (T0 ). Three-dimensional maps of the texture feature autocorrelation were computed from T1-weighted images. One hundred and nineteen controls and 137 ALS patients were included, with 81 controls and 84 ALS patients returning for at least one follow-up. At baseline, texture changes in ALS patients were detected in the motor cortex, corticospinal tract, insular cortex, and bilateral frontal and temporal white matter compared to controls. Longitudinal comparison of texture maps between T0 and Tmax (last follow-up visit) within ALS patients showed progressive texture alterations in the temporal white matter, insula, and internal capsule. Additionally, when compared to controls, ALS patients had greater texture changes in the frontal and temporal structures at Tmax than at T0 . In subgroup analysis, slow progressing ALS patients had greater progressive texture change in the internal capsule than the fast progressing patients. Contrastingly, fast progressing patients had greater progressive texture changes in the precentral gyrus. These findings suggest that the characteristic longitudinal gray matter pathology in ALS is the progressive involvement of frontotemporal regions rather than a worsening pathology within the motor cortex, and that phenotypic variability is associated with distinct progressive spatial pathology.
Collapse
Affiliation(s)
- Abdullah Ishaque
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Daniel Ta
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Muhammad Khan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Lawrence Korngut
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Angela Genge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Canada
| | - Annie Dionne
- Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, CHU de Québec, Quebec City, Canada
| | - Hannah Briemberg
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Collin Luk
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Yee-Hong Yang
- Department of Computing Science, University of Alberta, Edmonton
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Derek Emery
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| | - Dean T Eurich
- School of Public Health, University of Alberta, Edmonton, Canada
| | - Richard Frayne
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Canada
| | - Simon Graham
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Alan Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec, Université Laval, Quebec City, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Sanjay Kalra
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Foran AM, Mathias JL, Bowden SC. Effectiveness of sorting tests for detecting cognitive decline in older adults with dementia and other common neurodegenerative disorders: A meta-analysis. Neurosci Biobehav Rev 2020; 120:442-454. [PMID: 33091417 DOI: 10.1016/j.neubiorev.2020.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
The demand for simple, accurate and time-efficient screens to detect cognitive decline at point-of-care is increasing. Sorting tests are often used to detect the 'executive' deficits that are commonly associated with behavioural-variant frontotemporal dementia (bvFTD), but their potential for use as a cognitive screen with older adults is unclear. A comprehensive search of four databases identified 142 studies that compared the sorting test performance (e.g. WCST, DKEFS-ST) of adults with a common neurodegenerative disorder (e.g. Alzheimer's disease, vascular dementia, bvFTD, Parkinson's disease) and cognitively-healthy controls. Hedges' g effect sizes were used to compare the groups on five common test scores (Category, Total, Perseveration, Error, Description). The neurodegenerative disorders (combined) showed large deficits on all scores (g -1.0 to -1.3), with dementia (combined subtypes) performing more poorly (g -1.2 to -2.1), although bvFTD was not disproportionately worse than the other dementias. Overall, sorting tests detected the cognitive impairments caused by common neurodegenerative disorders, especially dementia, highlighting their potential suitability as a cognitive screen for older adults.
Collapse
Affiliation(s)
- A M Foran
- School of Psychology, University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - J L Mathias
- School of Psychology, University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - S C Bowden
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
8
|
Abstract
After obtaining a sample of published, peer-reviewed articles from journals with high and low impact factors in social, cognitive, neuro-, developmental, and clinical psychology, we used a priori equations recently derived by Trafimow (Educational and Psychological Measurement, 77, 831-854, 2017; Trafimow & MacDonald in Educational and Psychological Measurement, 77, 204-219, 2017) to compute the articles' median levels of precision. Our findings indicate that developmental research performs best with respect to precision, whereas cognitive research performs the worst; however, none of the psychology subfields excelled. In addition, we found important differences in precision between journals in the upper versus lower echelons with respect to impact factors in cognitive, neuro-, and clinical psychology, whereas the difference was dramatically attenuated for social and developmental psychology. Implications are discussed.
Collapse
|
9
|
Cognitive and Neuroanatomic Accounts of Referential Communication in Focal Dementia. eNeuro 2019; 6:ENEURO.0488-18.2019. [PMID: 31451606 PMCID: PMC6794081 DOI: 10.1523/eneuro.0488-18.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
The primary function of language is to communicate—that is, to make individuals reach a state of mutual understanding about a particular thought or idea. Accordingly, daily communication is truly a task of social coordination. Indeed, successful interactions require individuals to (1) track and adopt a partner’s perspective and (2) continuously shift between the numerous elements relevant to the exchange. Here, we use a referential communication task to study the contributions of perspective taking and executive function to effective communication in nonaphasic human patients with behavioral variant frontotemporal dementia (bvFTD). Similar to previous work, the task was to identify a target object, embedded among an array of competitors, for an interlocutor. Results indicate that bvFTD patients are impaired relative to control subjects in selecting the optimal, precise response. Neuropsychological testing related this performance to mental set shifting, but not to working memory or inhibition. Follow-up analyses indicated that some bvFTD patients perform equally well as control subjects, while a second, clinically matched patient group performs significantly worse. Importantly, the neuropsychological profiles of these subgroups differed only in set shifting. Finally, structural MRI analyses related patient impairment to gray matter disease in orbitofrontal, medial prefrontal, and dorsolateral prefrontal cortex, all regions previously implicated in social cognition and overlapping those related to set shifting. Complementary white matter analyses implicated uncinate fasciculus, which carries projections between orbitofrontal and temporal cortices. Together, these findings demonstrate that impaired referential communication in bvFTD is cognitively related to set shifting, and anatomically related to a social-executive network including prefrontal cortices and uncinate fasciculus.
Collapse
|
10
|
Frontal Anatomical Correlates of Cognitive and Speech Motor Deficits in Amyotrophic Lateral Sclerosis. Behav Neurol 2019; 2019:9518309. [PMID: 31001362 PMCID: PMC6436339 DOI: 10.1155/2019/9518309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/25/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023] Open
Abstract
The goal of this study was to identify neurostructural frontal lobe correlates of cognitive and speaking rate changes in amyotrophic lateral sclerosis (ALS). 17 patients diagnosed with ALS and 12 matched controls underwent clinical, bulbar, and neuropsychological assessment and structural neuroimaging. Neuropsychological testing was performed via a novel computerized frontal battery (ALS-CFB), based on a validated theoretical model of frontal lobe functions, and focused on testing energization, executive function, emotion processing, theory of mind, and behavioral inhibition via antisaccades. The measure of speaking rate represented bulbar motor changes. Neuroanatomical assessment was performed using volumetric analyses focused on frontal lobe regions, postcentral gyrus, and occipital lobes as controls. Partial least square regressions (PLS) were used to predict behavioral (cognitive and speech rate) outcomes using volumetric measures. The data supported the overall hypothesis that distinct behavioral changes in cognition and speaking rate in ALS were related to specific regional neurostructural brain changes. These changes did not support a notion of a general dysexecutive syndrome in ALS. The observed specificity of behavior-brain changes can begin to provide a framework for subtyping of ALS. The data also support a more integrative framework for clinical assessment of frontal lobe functioning in ALS, which requires both behavioral testing and neuroimaging.
Collapse
|
11
|
Xie T, Zhang X, Tang X, Zhang H, Yu M, Gong G, Wang X, Evans A, Zhang Z, He Y. Mapping Convergent and Divergent Cortical Thinning Patterns in Patients With Deficit and Nondeficit Schizophrenia. Schizophr Bull 2019; 45:211-221. [PMID: 29272543 PMCID: PMC6293229 DOI: 10.1093/schbul/sbx178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deficit schizophrenia (DS) is a homogeneous subtype of schizophrenia characterized by primary and enduring negative symptoms. However, the underlying neuroanatomical substrate of DS remains poorly understood. Here, we collected high-resolution structural magnetic resonance images of 115 participants, including 33 DS patients, 41 nondeficit schizophrenia (NDS) patients, and 41 healthy controls (HCs), and calculated the cortical thickness and surface area for statistical comparisons among the 3 groups. Relative to the control group, both the DS and NDS groups exhibited convergent cortical thinning in the bilateral inferior frontal gyri and the left superior temporal gyrus. The cortical thinning in the right inferior frontal cortex in the patient group was significantly positively correlated with declines of cognitive flexibility and visuospatial memory. Importantly, compared to the NDS group, the DS group exhibited a more widespread cortical thinning pattern, with the most significant differences in the left temporo-parietal junction area. For the surface area measurement, no significant group differences were observed. Collectively, these results highlight the convergent and divergent cortical thinning patterns between patients with DS and NDS, which provide critical insights into the neuroanatomical substrate of DS and improve our understanding of the biological mechanism that contributes to the negative symptoms and cognitive impairments in DS.
Collapse
Affiliation(s)
- Teng Xie
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China,Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaowei Tang
- Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Subei People’s Hospital of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Miao Yu
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gaolang Gong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiang Wang
- Medical Psychological Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Alan Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
| | - Zhijun Zhang
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,To whom correspondence should be addressed; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Key Laboratory of Brain Imaging and Connectomics, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China. E-mail:
| |
Collapse
|
12
|
Placek K, Baer GM, Elman L, McCluskey L, Hennessy L, Ferraro PM, Lee EB, Lee VMY, Trojanowski JQ, Van Deerlin VM, Grossman M, Irwin DJ, McMillan CT. UNC13A polymorphism contributes to frontotemporal disease in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2019; 73:190-199. [PMID: 30368160 PMCID: PMC6251755 DOI: 10.1016/j.neurobiolaging.2018.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022]
Abstract
The majority (90%-95%) of amyotrophic lateral sclerosis (ALS) is sporadic, and ∼50% of patients develop symptoms of frontotemporal degeneration (FTD) associated with shorter survival. The genetic polymorphism rs12608932 in UNC13A confers increased risk of sporadic ALS and sporadic FTD and modifies survival in ALS. Here, we evaluate whether rs12608932 is also associated with frontotemporal disease in sporadic ALS. We identified reduced cortical thickness in sporadic ALS with T1-weighted magnetic resonance imaging (N = 109) relative to controls (N = 113), and observed that minor allele (C) carriers exhibited greater reduction of cortical thickness in the dorsal prefrontal, ventromedial prefrontal, anterior temporal, and middle temporal cortices and worse performance on a frontal lobe-mediated cognitive test (reverse digit span). In sporadic ALS with autopsy data (N = 102), minor allele homozygotes exhibited greater burden of phosphorylated tar DNA-binding protein-43 kda (TDP-43) pathology in the middle frontal, middle temporal, and motor cortices. Our findings demonstrate converging evidence that rs12608932 may modify frontotemporal disease in sporadic ALS and suggest that rs12608932 may function as a prognostic indicator and could be used to define patient endophenotypes in clinical trials.
Collapse
Affiliation(s)
- Katerina Placek
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - G Michael Baer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Lauren Elman
- University of Pennsylvania, Penn Comprehensive ALS Center, Philadelphia, PA, USA
| | - Leo McCluskey
- University of Pennsylvania, Penn Comprehensive ALS Center, Philadelphia, PA, USA
| | - Laura Hennessy
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Pilar M Ferraro
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Poletti B, Carelli L, Faini A, Solca F, Meriggi P, Lafronza A, Ciringione L, Pedroli E, Ticozzi N, Ciammola A, Cipresso P, Riva G, Silani V. The Arrows and Colors Cognitive Test (ACCT): A new verbal-motor free cognitive measure for executive functions in ALS. PLoS One 2018; 13:e0200953. [PMID: 30091987 PMCID: PMC6084851 DOI: 10.1371/journal.pone.0200953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
Abstract
Background and objective The presence of executive deficits in patients with Amyotrophic Lateral Sclerosis is well established, even if standardized measures are difficult to obtain due to progressive physical disability of the patients. We present clinical data concerning a newly developed measure of cognitive flexibility, administered by means of Eye-Tracking (ET) technology in order to bypass verbal-motor limitations. Methods 21 ALS patients and 21 age-and education-matched healthy subjects participated in an ET-based cognitive assessment, including a newly developed test of cognitive flexibility (Arrows and Colors Cognitive Test–ACCT) and other oculomotor-driven measures of cognitive functions. A standard screening of frontal and working memory abilities and global cognitive efficiency was administered to all subjects, in addition to a psychological self-rated assessment. For ALS patients, a clinical examination was also performed. Results ACCT successfully discriminated between patients and healthy controls, mainly concerning execution times obtained at different subtests. A qualitative analysis performed on error distributions in patients highlighted a lower prevalence of perseverative errors, with respect to other type of errors. Correlations between ACCT and other ET-based frontal-executive measures were significant and involved different frontal sub-domains. Limited correlations were observed between ACCT and standard ‘paper and pencil’ cognitive tests. Conclusions The newly developed ET-based measure of cognitive flexibility could be a useful tool to detect slight frontal impairments in non-demented ALS patients by bypassing verbal-motor limitations through the oculomotor-driven administration. The findings reported in the present study represent the first contribution towards the development of a full verbal-motor free executive test for ALS patients.
Collapse
Affiliation(s)
- Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
- * E-mail:
| | - Laura Carelli
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences—IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federica Solca
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Paolo Meriggi
- ICT & Biomedical Technology Integration Unit, Centre for Innovation and Technology Transfer (CITT), Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Annalisa Lafronza
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luciana Ciringione
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience—IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Woolley SC, Rush BK. Considerations for Clinical Neuropsychological Evaluation in Amyotrophic Lateral Sclerosis. Arch Clin Neuropsychol 2018; 32:906-916. [PMID: 29028904 DOI: 10.1093/arclin/acx089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
Abstract
The clinical neuropsychologist has the opportunity to be uniquely involved in the evaluation and treatment of individuals with amyotrophic lateral sclerosis (ALS). We review the current literature that defines cognitive and behavioral symptoms in ALS, including current knowledge of the neuropathological and genetic underpinning for these symptoms. There are unique considerations for clinical neuropsychological evaluation and clinical research in ALS and we highlight these in this review. Specifically, we shed light on special factors that contribute to our understanding of cognitive and behavioral impairment in ALS, including co-morbid symptoms, differential diagnosis, and considerations for longitudinal tracking of phenotypes. We discuss the rationale for proposing a specific approach to such as cognitive screening, test selection, response modality consideration, and test-retest intervals. With this didactic overview, the clinical neuropsychologist has the potential to learn more about the heterogeneous presentation of motor and neuropsychological symptoms in ALS. Furthermore, the reader has the opportunity to understand what it takes to develop a valid assessment approach particularly when the phenotype of ALS remains undefined in some regards. This clinical practice review sets the stage for the clinical neuropsychologist to further contribute to our clinical and scientific understanding of ALS and cognition.
Collapse
Affiliation(s)
| | - Beth K Rush
- Mayo Clinic Florida, Department of Psychiatry and Psychology, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
15
|
Branco LMT, de Rezende TJR, Roversi CDO, Zanao T, Casseb RF, de Campos BM, França MC. Brain signature of mild stages of cognitive and behavioral impairment in amyotrophic lateral sclerosis. Psychiatry Res Neuroimaging 2018; 272:58-64. [PMID: 29175194 DOI: 10.1016/j.pscychresns.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
We aimed to assess the brain signature of cognitive and behavioral impairment in C9orf72-negative non-demented ALS patients. The study included 50 amyotrophic lateral sclerosis (ALS) patients (out of 75 initially recruited) and 38 healthy controls. High-resolution T1-weighted and spin-echo diffusion tensor images were acquired in a 3T MRI scanner. The multi atlas-based analysis protocol and the FreeSurfer tool were employed for gray matter assessment, and fiber tractography for white matter evaluation. Cognitively impaired ALS patients (n = 12) had bilateral amygdalae and left thalamic volumetric reduction compared to non-impaired ALS patients. Behaviorally impaired ALS patients (n = 14) had lower fractional anisotropy (FA) at the fornix in comparison with healthy subjects. These parameters did correlate with cognitive/behavioral scores, but not with motor-functional parameters in the ALS cohort. We believe that basal ganglia and fornix damage might be related to cognitive and behavioral impairment across ALS-frontotemporal dementia continuum. Also, distinct anatomical areas seem to influence the behavioral and cognitive status of these individuals.
Collapse
Affiliation(s)
- Lucas M T Branco
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Thiago J R de Rezende
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Caroline de O Roversi
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Tamires Zanao
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Raphael F Casseb
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Brunno M de Campos
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Marcondes C França
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
16
|
Zhang Y, Fang T, Wang Y, Guo X, Alarefi A, Wang J, Jiang T, Zhang J. Occipital cortical gyrification reductions associate with decreased functional connectivity in amyotrophic lateral sclerosis. Brain Imaging Behav 2018; 11:1-7. [PMID: 26780240 DOI: 10.1007/s11682-015-9499-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscular weakness and atrophy. Several morphometric studies have been conducted to investigate the gray matter volume or thickness changes in ALS, whereas the cortical folding pattern remains poorly understood. In the present study, we applied a surface-based local gyrification index (LGI) from high resolution MRI data to quantify the cortical folding in matched samples of 25 ALS patients versus 25 healthy controls. Using resting-state fMRI data, we further conducted seed-based functional connectivity analysis to explore the functional correlate of the cortical folding changes. We found that ALS patients had significantly reduced LGI in right occipital cortex and that abnormality in this region associated with decreased functional connectivity in the bilateral precuneus. This set of findings was speculated to result from disturbed white matter connectivity in ALS. In the patient group, we revealed significant negative correlations between disease duration and the LGIs of a cluster in the left superior frontal gyrus, which may reflect the cognitive deterioration in ALS. In summary, our results suggest that LGI may provide a useful means to assess ALS-related neurodegeneration and to study the pathophysiology of ALS.
Collapse
Affiliation(s)
- Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tao Fang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yue Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Guo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Abdulqawi Alarefi
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jiuquan Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
17
|
Shellikeri S, Karthikeyan V, Martino R, Black SE, Zinman L, Keith J, Yunusova Y. The neuropathological signature of bulbar-onset ALS: A systematic review. Neurosci Biobehav Rev 2017; 75:378-392. [PMID: 28163193 DOI: 10.1016/j.neubiorev.2017.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/11/2022]
Abstract
ALS is a multisystem disorder affecting motor and cognitive functions. Bulbar-onset ALS (bALS) may be preferentially associated with cognitive and language impairments, compared with spinal-onset ALS (sALS), stemming from a potentially unique neuropathology. The objective of this systematic review was to compare neuropathology findings reported for bALS and sALS subtypes in studies of cadaveric brains. Using Cochrane guidelines, we reviewed articles in MEDLINE, Embase, and PsycINFO databases using standardized search terms for ALS and neuropathology, from inception until July 16th 2016. 17 studies were accepted for analysis. The analysis revealed that both subtypes presented with involvement in motor and frontotemporal cortices, deep cortical structures, and cerebellum and were characterized by neuronal loss, spongiosis, myelin pallor, and ubiquitin+ and TDP43+ inclusion bodies. Changes in Broca and Wernicke areas - regions associated with speech and language processing - were noted exclusively in bALS. Further, some bALS cases presented with atypical pathology such as neurofibrillary tangles and basophilic inclusions, which were not found in sALS cases. Given the limited number of studies, all with methodological biases, further work is required to better understand neuropathology of ALS subtypes.
Collapse
Affiliation(s)
- S Shellikeri
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | - V Karthikeyan
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - R Martino
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Health Care and Outcomes Research, Krembil Research Institute, Toronto, Ontario, Canada; Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - S E Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Medicine, Neurology, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada; Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - L Zinman
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Neurology, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| | - J Keith
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Y Yunusova
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; University Health Network - Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This article describes a comprehensive approach to the mental status examination and diagnostic workup of patients suspected of having an emerging neurodegenerative dementia. Key strategies for obtaining a history and bedside examination techniques are highlighted. RECENT FINDINGS Classic descriptions of behavioral neurology syndromes were largely based on clinicopathologic correlations of strategic lesions in stroke patients. While still very important, advances in neuroimaging have expanded our armamentarium of cognitive evaluations to include assessments of findings in nonstroke anatomic distributions of disease. These efforts support comprehensive assessments of large-scale cerebral networks in cognitive neurology. SUMMARY A thorough and focused mental status examination is essential for the evaluation of patients with cognitive symptoms. Selective use of laboratory testing and neuroimaging can aid in the diagnosis of dementia by excluding non-neurodegenerative etiologies. Neurodegenerative disease-specific tests are in development and will enhance diagnosis and efforts for disease-modifying therapy development.
Collapse
|
19
|
The Edinburgh Cognitive and Behavioural ALS Screen in a Chinese Amyotrophic Lateral Sclerosis Population. PLoS One 2016; 11:e0155496. [PMID: 27195772 PMCID: PMC4873026 DOI: 10.1371/journal.pone.0155496] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/30/2016] [Indexed: 11/19/2022] Open
Abstract
Objective The existing screening batteries assessing multiple neuropsychological functions are not specific to amyotrophic lateral sclerosis (ALS) patients and are limited to their physical dysfunctions, whereas category cognitive tests are too time-consuming to assess all the domains. The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was recently developed as a fast and easy cognitive screening tool specifically designed for patients. The purpose of the study was to validate the effectiveness of the Chinese version in Chinese ALS populations. Methods Eighty-four ALS patients and 84 age-, gender- and education-matched healthy controls were included in this cross-sectional study. All the participants took the ECAS, Mini-Mental State Examination (MMSE) and Frontal Assessment Battery (FAB). Primary caregivers of patients were interviewed for behavioural and psychiatric changes. Results Significant differences were noted in language (p = 0.01), fluency, executive function, ALS-specific functions, and ECAS total score (p<0.01) between ALS patients and controls. The cut-off value of the total ECAS score was 81.92. Cognitive impairment was observed in 35.71% of patients, and 27.38% exhibited behavioural abnormalities. The ECAS total score had a medium correlation with education year. Memory was more easily impaired in the lower education group, whereas verbal fluency and language function tended to be preserved in the higher education group. The average time of ECAS was only 18 minutes. Conclusion The Chinese version of the ECAS is the first screening battery assessing multiple neuropsychological functions specially designed for the ALS population in China, which provides an effective and rapid tool to screen cognitive and behavioural impairments.
Collapse
|
20
|
Bisbing TA, Olm CA, McMillan CT, Rascovsky K, Baehr L, Ternes K, Irwin DJ, Clark R, Grossman M. Estimating frontal and parietal involvement in cognitive estimation: a study of focal neurodegenerative diseases. Front Hum Neurosci 2015; 9:317. [PMID: 26089786 PMCID: PMC4454843 DOI: 10.3389/fnhum.2015.00317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/18/2015] [Indexed: 12/14/2022] Open
Abstract
We often estimate an unknown value based on available relevant information, a process known as cognitive estimation. In this study, we assess the cognitive and neuroanatomic basis for quantitative estimation by examining deficits in patients with focal neurodegenerative disease in frontal and parietal cortex. Executive function and number knowledge are key components in cognitive estimation. Prefrontal cortex has been implicated in multilevel reasoning and planning processes, and parietal cortex has been associated with number knowledge required for such estimations. We administered the Biber cognitive estimation test (BCET) to assess cognitive estimation in 22 patients with prefrontal disease due to behavioral variant frontotemporal dementia (bvFTD), to 17 patients with parietal disease due to corticobasal syndrome (CBS) or posterior cortical atrophy (PCA) and 11 patients with mild cognitive impairment (MCI). Both bvFTD and CBS/PCA patients had significantly more difficulty with cognitive estimation than controls. MCI were not impaired on BCET relative to controls. Regression analyses related BCET performance to gray matter atrophy in right lateral prefrontal and orbital frontal cortices in bvFTD, and to atrophy in right inferior parietal cortex, right insula, and fusiform cortices in CBS/PCA. These results are consistent with the hypothesis that a frontal-parietal network plays a crucial role in cognitive estimation.
Collapse
Affiliation(s)
- Teagan A Bisbing
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Christopher A Olm
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Laura Baehr
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Kylie Ternes
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Robin Clark
- Department of Linguistics, University of Pennsylvania, Philadelphia, PA USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
21
|
Ash S, Olm C, McMillan CT, Boller A, Irwin DJ, McCluskey L, Elman L, Grossman M. Deficits in sentence expression in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2014; 16:31-9. [PMID: 25482157 DOI: 10.3109/21678421.2014.974617] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Quantitative examinations of speech production in amyotrophic lateral sclerosis (ALS) are rare. To identify language features minimally confounded by a motor disorder, we investigated linguistic and motor sources of impaired sentence expression in ALS, and we related deficits to gray matter (GM) and white matter (WM) MRI abnormalities. We analyzed a semi-structured speech sample in 26 ALS patients and 19 healthy seniors for motor- and language-related deficits. Regression analyses related grammaticality to GM atrophy and reduced WM fractional anisotropy (FA). Results demonstrated that ALS patients were impaired relative to controls on quantity of speech, speech rate, speech articulation errors, and grammaticality. Speech rate and articulation errors were related to the patients' motor impairment, while grammatical difficulty was independent of motor difficulty. This was confirmed in subgroups without dysarthria and without executive deficits. Regressions related grammatical expression to GM atrophy in left inferior frontal and anterior temporal regions and to reduced FA in superior longitudinal and inferior frontal-occipital fasciculi. In conclusion, patients with ALS exhibit multifactorial deficits in sentence expression. They demonstrate a deficit in grammatical expression that is independent of their motor disorder. Impaired grammatical expression is related to disease in a network of brain regions associated with syntactic processing.
Collapse
Affiliation(s)
- Sharon Ash
- Department of Neurology and the Penn Frontotemporal Degeneration Center , Philadelphia , USA
| | | | | | | | | | | | | | | |
Collapse
|