1
|
Sanghani N, Claytor B, Li Y. Electrodiagnostic findings in amyotrophic lateral sclerosis: Variation with region of onset and utility of thoracic paraspinal muscle examination. Muscle Nerve 2024; 69:172-178. [PMID: 38038225 DOI: 10.1002/mus.28012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION/AIMS Limited data exist regarding variation of electrodiagnostic (EDX) findings in amyotrophic lateral sclerosis (ALS) patients with different onset regions and specificity of thoracic paraspinal muscle (TPSP) examination for confirming a diagnosis of ALS. We aimed to demonstrate the variation of EDX features and characterize the utility of TPSP muscle examination in the electrodiagnosis of ALS. METHODS This is a retrospective study of a large cohort of ALS patients who had a comprehensive EDX evaluation. RESULTS The study included 448 patients; all fulfilled the Gold Coast criteria for ALS. The average age at the time of EDX study was 64 years, and 41.1% were women. The onset region was identified as follows: bulbar (N = 149), cervical (N = 127), lumbosacral (N = 162), and other (N = 10). In contrast to limb onset, bulbar-onset patients more frequently demonstrated a pattern of normal or near normal needle electromyography (EMG) (p < .0001) and less frequently had abnormalities on EMG of TPSP (p = .002). Clinical or EDX diagnosis of sensory polyneuropathy was present in 12.6% patients, more frequently in the lumbosacral onset subgroup (p < .03). EMG showed active denervation in 9.6% and chronic denervation in 59% of craniobulbar muscles examined, without observed difference among different onset regions. TPSP showed higher frequencies of active and chronic denervation in ALS than a group of patients with non-ALS neuromuscular disorders. DISCUSSION EDX features may differ among ALS patients of different onset regions. TPSP EMG is highly useful in differentiating ALS from non-ALS neuromuscular disorders while the yield of craniobulbar muscles, especially for active denervation, is low.
Collapse
Affiliation(s)
- Nirav Sanghani
- Neuromuscular Center, Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Benjamin Claytor
- Neuromuscular Center, Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yuebing Li
- Neuromuscular Center, Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 2022; 145:27-44. [PMID: 34677606 PMCID: PMC8967095 DOI: 10.1093/brain/awab404] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | - Jalayne J Arias
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Richard S Finkel
- Department of Pediatric Medicine, Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Amin Lari A, Ghavanini AA, Bokaee HR. A review of electrophysiological studies of lower motor neuron involvement in amyotrophic lateral sclerosis. Neurol Sci 2019; 40:1125-1136. [PMID: 30877611 DOI: 10.1007/s10072-019-03832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving both the upper and lower motor neuron diseases. In this review, we studied and compared different articles regarding the electrodiagnostic criteria for diagnosis of lower motor neuron pathology in ALS. We reviewed the most recent articles and metaanalysis regarding various lower motor neuron electrodiagnostic methods for ALS and their sensitivities. We concluded that Awaji Shima criteria is by far the most sensitive criteria for diagnosis of ALS.
Collapse
Affiliation(s)
- Ali Amin Lari
- Canadian Neurologic Center, Mississauga, ON, Canada.
| | | | | |
Collapse
|
9
|
Turner MR, Benatar M. Ensuring continued progress in biomarkers for amyotrophic lateral sclerosis. Muscle Nerve 2015; 51:14-8. [PMID: 25288265 PMCID: PMC4270289 DOI: 10.1002/mus.24470] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022]
Abstract
Multiple candidate biomarkers for amyotrophic lateral sclerosis (ALS) have emerged across a range of platforms. Replication of results, however, has been absent in all but a few cases, and the range of control samples has been limited. If progress toward clinical translation is to continue, the specific biomarker needs of ALS, which differ from those of other neurodegenerative disorders, as well as the challenges inherent to longitudinal ALS biomarker cohorts, must be understood. Appropriate application of multimodal approaches, international collaboration, presymptomatic studies, and biomarker integration into future therapeutic trials are among the essential priorities going forward.
Collapse
Affiliation(s)
- Martin R Turner
- Oxford University, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, West Wing Level 3, Oxford, OX3 9DU, UK
| | | |
Collapse
|
10
|
Abstract
Paraspinal EMG needle examination is commonly performed in amyotrophic lateral sclerosis (ALS) for diagnosis. Because lower motor neurons for axial muscles and diaphragm are located medially in the anterior horn, we tested if involvement of axial muscles is associated with diaphragm weakness in ALS. Forty-four ALS patients were included with ALSFRS greater than 20/40. We used needle EMG to search for signs of denervation in biceps, tibialis anterior, C6 and T5 paraspinal muscles, and intercostal and diaphragm muscles. We also evaluated phrenic nerve motor responses and forced vital capacity (FVC). We tested specificity, sensitivity, and discriminative strength (ROC analysis). Fibs-sw in C6 and T5 paraspinal muscles, as well as fibs-sw in diaphragm and intercostal muscles showed high specificity and positive predictive value for FVC<80%. Discriminative strength was good for all the above tests, as well as for phrenic nerve amplitude and ALSFRS regarding FVC<80%. Axial muscles denervation is related to diaphragm denervation and therefore to poor respiratory function in ALS. We suggest that medially located lower motor neurons are affected concurrently in ALS.
Collapse
|