1
|
Pacreu S, Vilà E, Moltó L, Fernández‐Candil J, Fort B, Lin Y, León A. Effect of dexmedetomidine on evoked-potential monitoring in patients undergoing brain stem and supratentorial cranial surgery. Acta Anaesthesiol Scand 2021; 65:1043-1053. [PMID: 33884609 DOI: 10.1111/aas.13835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Dexmedetomidine is used as adjuvant in total intravenous anaesthesia (TIVA), but there have been few studies concerning its effect on intraoperative neurophysiological monitoring (IONM) during cranial surgery. Our aim was to study the effect of dexmedetomidine on IONM in patients undergoing brain stem and supratentorial cranial surgery. METHODS Two prospective, randomized, double-blind substudies were conducted. In substudy 1, during TIVA with an infusion of propofol and remifentanil, 10 patients received saline solution (SS) (PR group) and another 10 (PRD group) received dexmedetomidine (0.5 mcg/kg/h). Total dosage of propofol and remifentanil, intensity, latency and amplitude of motor-evoked potentials following transcranial electrical stimulation (tcMEPs) as well as somatosensory-evoked potentials (SSEP) were recorded at baseline, 15, 30, 45 minutes, and at the end of surgery. In order to identify differences in the same patient after dexmedetomidine administration, we designed substudy 2 with 20 new patients randomized to two groups. After 30 minutes with TIVA, 10 patients received dexmedetomidine (0.5 mcg/kg/h) and 10 patients SS. The same variables were recorded. RESULTS In substudy 1, propofol requirements were significantly lower (P = .004) and tcMEP intensity at the end of surgery was significantly higher in PRD group, but no statistically significant differences were observed for remifentanil requirements, SSEP and tcMEP latency or amplitude. In substudy 2, no differences in any of the variables were identified. CONCLUSIONS The administration of dexmedetomidine at a dosage of 0.5 mg/kg/h may reduce propofol requirements and adversely affect some neuromonitoring variables. However, it can be an alternative on IONM during cranial surgeries. REDEX EudraCT: 2014-000962-23.
Collapse
Affiliation(s)
- Susana Pacreu
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Esther Vilà
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Luis Moltó
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Juan Fernández‐Candil
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Beatriz Fort
- Anaesthesiology, Reanimation, and Pain Therapy Unit Parc de Salut MARInstitut Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain
| | - Yiyang Lin
- Neurology Unit Neurophysiologic Section Parc de Salut MAR Barcelona Spain
| | - Alba León
- Neurology Unit Neurophysiologic Section Parc de Salut MAR Barcelona Spain
| |
Collapse
|
2
|
Asimakidou E, Abut PA, Raabe A, Seidel K. Motor Evoked Potential Warning Criteria in Supratentorial Surgery: A Scoping Review. Cancers (Basel) 2021; 13:2803. [PMID: 34199853 PMCID: PMC8200078 DOI: 10.3390/cancers13112803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/31/2022] Open
Abstract
During intraoperative monitoring of motor evoked potentials (MEP), heterogeneity across studies in terms of study populations, intraoperative settings, applied warning criteria, and outcome reporting exists. A scoping review of MEP warning criteria in supratentorial surgery was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sixty-eight studies fulfilled the eligibility criteria. The most commonly used alarm criteria were MEP signal loss, which was always a major warning sign, followed by amplitude reduction and threshold elevation. Irreversible MEP alterations were associated with a higher number of transient and persisting motor deficits compared with the reversible changes. In almost all studies, specificity and Negative Predictive Value (NPV) were high, while in most of them, sensitivity and Positive Predictive Value (PPV) were rather low or modest. Thus, the absence of an irreversible alteration may reassure the neurosurgeon that the patient will not suffer a motor deficit in the short-term and long-term follow-up. Further, MEPs perform well as surrogate markers, and reversible MEP deteriorations after successful intervention indicate motor function preservation postoperatively. However, in future studies, a consensus regarding the definitions of MEP alteration, critical duration of alterations, and outcome reporting should be determined.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Pablo Alvarez Abut
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
- Department of Neurosurgery, Clínica 25 de Mayo, 7600 Mar del Plata, Argentina
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| |
Collapse
|
3
|
Umemura T, Nishizawa S, Nakano Y, Saito T, Kitagawa T, Miyaoka R, Suzuki K, Yamamoto J. Intraoperative monitoring of motor-evoked potential for parenchymal brain tumor removal: An analysis of false-negative cases. J Clin Neurosci 2018; 57:105-110. [PMID: 30145081 DOI: 10.1016/j.jocn.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/05/2018] [Accepted: 08/12/2018] [Indexed: 11/18/2022]
Abstract
Transcranial motor-evoked potential (tc-MEP) monitoring is unreliable for brain tumor removal due to its low sensitivity. According to previous literature, this is because transcranial stimulation seems to reach the deep pyramidal tract beyond the operation point and may thus yield false-negative results, where, although MEP recording is stable, postoperative motor deficits are encountered. Therefore, we aimed to analyze the causes for the false-negative results and investigate whether decreasing the stimulation intensity better reflects the operation point and can improve the sensitivity during parenchymal brain tumor removal. We assessed 122 patients with parenchymal brain and intraventricular tumors, who underwent surgery under tc-MEP monitoring in our hospital between 2011 and 2014. In these patients, the stimulation intensity was fixed at 200 mA. We detected 11 false-negative cases, while the sensitivity of tc-MEP monitoring was 33.9% and the specificity was 99.0%. Between 2015 and 2016, we examined 68 patients with parenchymal brain tumors, in whom the stimulation intensity was reduced to an average of 136.5 mA. Only one case was false-negative, while the sensitivity increased to 83.3% and the specificity was 98.4%. From these results, we conclude that the intensity of tc-MEP stimulation should be minimal to precisely reflect the damage to the operated location. Tc-MEP can be an easy and reliable monitor in brain tumor surgery when used at proper, lower intensity.
Collapse
Affiliation(s)
- Takeru Umemura
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Yoshiteru Nakano
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Takeshi Saito
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Takehiro Kitagawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Ryo Miyaoka
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Kohei Suzuki
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
4
|
Abboud T, Schaper M, Dührsen L, Schwarz C, Schmidt NO, Westphal M, Martens T. A novel threshold criterion in transcranial motor evoked potentials during surgery for gliomas close to the motor pathway. J Neurosurg 2016; 125:795-802. [PMID: 26799297 DOI: 10.3171/2015.8.jns151439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Warning criteria for monitoring of motor evoked potentials (MEP) after direct cortical stimulation during surgery for supratentorial tumors have been well described. However, little is known about the value of MEP after transcranial electrical stimulation (TES) in predicting postoperative motor deficit when monitoring threshold level. The authors aimed to evaluate the feasibility and value of this method in glioma surgery by using a new approach for interpreting changes in threshold level involving contra- and ipsilateral MEP. METHODS Between November 2013 and December 2014, 93 patients underwent TES-MEP monitoring during resection of gliomas located close to central motor pathways but not involving the primary motor cortex. The MEP were elicited by transcranial repetitive anodal train stimulation. Bilateral MEP were continuously evaluated to assess percentage increase of threshold level (minimum voltage needed to evoke a stable motor response from each of the muscles being monitored) from the baseline set before dural opening. An increase in threshold level on the contralateral side (facial, arm, or leg muscles contralateral to the affected hemisphere) of more than 20% beyond the percentage increase on the ipsilateral side (facial, arm, or leg muscles ipsilateral to the affected hemisphere) was considered a significant alteration. Recorded alterations were subsequently correlated with postoperative neurological deterioration and MRI findings. RESULTS TES-MEP could be elicited in all patients, including those with recurrent glioma (31 patients) and preoperative paresis (20 patients). Five of 73 patients without preoperative paresis showed a significant increase in threshold level, and all of them developed new paresis postoperatively (transient in 4 patients and permanent in 1 patient). Eight of 20 patients with preoperative paresis showed a significant increase in threshold level, and all of them developed postoperative neurological deterioration (transient in 4 patients and permanent in 4 patients). In 80 patients no significant change in threshold level was detected, and none of them showed postoperative neurological deterioration. The specificity and sensitivity in this series were estimated at 100%. Postoperative MRI revealed gross-total tumor resection in 56 of 82 patients (68%) in whom complete tumor resection was attainable; territorial ischemia was detected in 4 patients. CONCLUSIONS The novel threshold criterion has made TES-MEP a useful method for predicting postoperative motor deficit in patients who undergo glioma surgery, and has been feasible in patients with preoperative paresis as well as in patients with recurrent glioma. Including contra- and ipsilateral changes in threshold level has led to a high sensitivity and specificity.
Collapse
Affiliation(s)
- Tammam Abboud
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Schaper
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cindy Schwarz
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Martens
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Tokimura H, Sugata S, Yamahata H, Yunoue S, Hanaya R, Arita K. Intraoperative continuous monitoring of facial motor evoked potentials in acoustic neuroma surgery. Neurosurg Rev 2014; 37:669-76. [DOI: 10.1007/s10143-014-0561-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 03/23/2014] [Accepted: 05/18/2014] [Indexed: 11/30/2022]
|
6
|
Ostrý S, Belšan T, Otáhal J, Beneš V, Netuka D. Is intraoperative diffusion tensor imaging at 3.0T comparable to subcortical corticospinal tract mapping? Neurosurgery 2014; 73:797-807; discussion 806-7. [PMID: 23863765 DOI: 10.1227/neu.0000000000000087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Primary brain tumors in motor eloquent areas are associated with high-risk surgical procedures because of potentially permanent and often disabling motor deficits. Intraoperative primary motor cortex mapping and corticospinal tract (CST) monitoring are well-developed and reliable techniques. Imaging of the CST by diffusion tensor tractography (DTT) is also feasible. OBJECTIVE To evaluate the practical value of 3.0T intraoperative MRI (iMRI) with intraoperative DTT (iDTT) in surgery close to the CST, and to compare high-field iDTT with intraoperative neurophysiological CST mapping during glioma and metastasis resection in a routine setting. METHODS Twenty-five patients (13 males, 12 females, median 47 years) were enrolled prospectively from June 2010 to June 2012. Patients were included if they had a solitary supratentorial intracerebral lesion compressing or infiltrating the CST according to preoperative MRI. Subcortical CST mapping was performed by monopolar (cathodal) stimulation (500 Hz, 400 μs, 5 pulses). CST DTT was made both at preoperative and intraoperative 3.0T MRI. Subcortical motor-evoked potential threshold current and probe-CST distance were recorded at 155 points before and at 103 points after iMRI. Current-distance correlations were performed both for pre-iMRI and for post-iMRI data. RESULTS The correlation coefficient pre-iMRI was R = 0.470 (P < .001); post-iMRI, the correlation coefficient was R = 0.338 (P < .001). MRI radical resection was achieved in 17 patients (68%), subtotal in 5 (24%), and partial in 3 (12%). Postoperative paresis developed in 8 patients (32%); the paresis was permanent in 1 case (4%). CONCLUSION The linear current-distance correlation was found both in pre-iMRI and in post-iMRI data. Intraoperative image distortion appeared in 36%. Neurophysiological subcortical mapping remains superior to DTT. Combining these 2 methods in selected cases can help increase the safety of tumor resection close to the CST.
Collapse
Affiliation(s)
- Svatopluk Ostrý
- *Department of Neurosurgery, First Medical Faculty, Charles University in Prague, Central Military Hospital-Military University Hospital Prague, Czech Republic; ‡Department of Radiology, Central Military Hospital-Military University Hospital Prague, Czech Republic; and §Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|